微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

4.1 The knowledge of vehicle stopping distance serves as an additional tool in characterizing the pavement surface skid resistance. When used in conjunction with other physical and chemical tests, the skid resistance values derived from this test method may determine the suitability and adequacy of paving materials or finishing techniques. Improvements in pavement maintenance practices and schedules may result from use of this test method.4.2 The stopping distance values measured by this test method with the equipment and procedures stated herein do not necessarily agree or correlate directly with other methods of skid-resistance measurements.5,6 This test method is suitable for research and development purposes, where direct comparison between pavement surfaces are to be made within the same test program.1.1 This test method covers the measurement of stopping distance on paved surfaces with a passenger vehicle equipped with specified full-scale automobile tires.1.2 This test method utilizes a measurement of stopping distances representing the non-steady state skid resistance on four locked wheels as the vehicle decelerates over a wetted pavement surface under specified limits of static wheel load and from a desired speed, while the vehicle remains essentially parallel to its original direction of motion.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A baseline calibration oil (hereafter referred to as BC oil) has been established for this test to provide a standard against which all other oils can be compared. The BC oil is an SAE 5W-30 grade fully formulated lubricant. There is a direct correlation of Test Method D6837 (Sequence VIB) Fuel Economy Improvement (FEI) by percent with the fuel economy results obtained from vehicles representative of current production running under the current EPA testing cycles. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. Rather, it was developed to compare a test oil to BC oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIB test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API Publication 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight of 3856 kg or less. The tests are conducted on a dynamometer test stand using a specified spark-ignition engine with a displacement of 4.6-L. It applies to multiviscosity grade oils used in these applications.1.2 This test method also provides for the running of an abbreviated length test that is referred to as the VIBSJ. The procedure for VIBSJ is identical to the Sequence VIB with the exception of the items specifically listed in Annex A13. The procedure modifications listed in Annex A13 refer to the corresponding section of the Sequence VIB test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exceptions—Where there is no direct SI equivalent such as screw threads, National Pipe Threads/diameters, tubing size, or single source supply equipment specifications. Brake Specific Fuel Consumption is measured in kilograms per kilowatthour. In Figs. A2.4, A2.5, and A2.8, inch-pound units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This test method is arranged as follows:Subject SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus 6 General 6.1 Test Engine Configuration 6.2 Laboratory Ambient Conditions 6.3 Engine Speed and Torque Control 6.4  Dynamometer 6.4.1  Dynamometer Torque 6.4.2 Engine Cooling System 6.5 External Oil System 6.6 Fuel System 6.7  Fuel Flow Measurement 6.7.2  Fuel Temperature and Pressure Control to   the Fuel Flowmeter 6.7.3  Fuel Temperature and Pressure Control to   Engine Fuel Rail 6.7.4 Fuel Supply Pumps 6.7.5  Fuel Filtering 6.7.6 Engine Intake Air Supply 6.8  Intake Air Humidity 6.8.1  Intake Air Filtration 6.8.2  Intake Air Pressure Relief 6.8.3 Temperature Measurement 6.9  Thermocouple Location 6.9.5 AFR Determination 6.10 Exhaust and Exhaust Back Pressure Systems 6.11  Exhaust Manifolds 6.11.1  Laboratory Exhaust System 6.11.2  Exhaust Back Pressure 6.11.3 Pressure Measurement and Pressure Sensor  Locations 6.12  Engine Oil 6.12.2  Fuel to Fuel Flowmeter 6.12.3  Fuel to Engine Fuel Rail 6.12.4  Exhaust Back Pressure 6.12.5  Intake Air 6.12.6  Intake Manifold Vacuum/Absolute Pressure 6.12.7  Coolant Flow Differential Pressure 6.12.8  Crankcase Pressure 6.12.9 Engine Hardware and Related Apparatus 6.13  Test Engine Configuration 6.13.1  ECM/EEC (Engine Control) Module 6.13.2  Thermostat/Orifice Plate 6.13.3  Intake Manifold 6.13.4  Flywheel 6.13.5  Wiring Harnesses 6.13.6  EGR Block-Off Plate 6.13.7  Oil Pan 6.13.8  Oil Pump Screen and Pickup Tube 6.13.9  Idle Speed Control Solenoid (ISC) Block-Off   Plate 6.13.10  Engine Water Pump 6.13.11  Thermostat Housing 6.13.12  Oil Filter Adapter 6.13.13  Fuel Rail 6.13.14 Miscellaneous Apparatus Related to Engine  Operation 6.14  Timing Light 6.14.1Reagents and Materials 7 Engine Oil 7.1 Test Fuel 7.2 Engine Coolant 7.3 Cleaning Materials 7.4Preparation of Apparatus 8 Test Stand Preparation 8.2Engine Preparation 9 Cleaning of Engine Parts 9.2 Engine Assembly Procedure 9.3  General Assembly Instructions 9.3.1  Bolt Torque Specifications 9.3.2  Sealing Compounds 9.3.3  Harmonic Balancer 9.3.5  Oil Pan 9.3.6  Intake Manifold 9.3.7  Camshaft Covers 9.3.8  Thermostat 9.3.9  Thermostat Housing 9.3.10  Coolant Inlet 9.3.11  Oil Filter Adapter 9.3.12  Dipstick Tube 9.3.13  Water Pump 9.3.14  Sensors, Switches, Valves, and Positioners 9.3.15  Ignition System 9.3.16  Fuel Injection System 9.3.17  Intake Air System 9.3.18  Engine Management System (Spark and Fuel   Control) 9.3.19  Accessory Drive Units 9.3.20  Exhaust Manifolds 9.3.21  Engine Flywheel and Guards 9.3.22  Lifting of Assembled Engines 9.3.23  Engine Mounts 9.3.24Calibration 10 Stand/Engine Calibration 10.1  Procedure 10.1.1  Reporting of Reference Results 10.1.2  Analysis of Reference/Calibration Oils 10.1.3  Instrument Calibration 10.2  Engine Torque Measurement System 10.2.1  Fuel Flow Measurement System 10.2.2  Coolant Flow Measurement System 10.2.3  Thermocouple and Temperature Measurement   System 10.2.4  Humidity Measurement System 10.2.5  Other Instrumentation 10.2.6Test Procedure 11 Preparation for Initial Start-up of New Engine 11.1  External Oil System 11.1.1  Flush Effectiveness Demonstration 11.1.2  Preparation for Oil Charge 11.1.3  Oil Charge for Coolant Flush 11.1.4  Engine Coolant Charge for Coolant Flush 11.1.5 Initial Engine Start-up 11.2 Coolant Flush 11.3 New Engine Break-In 11.4  Oil Charge for Break-In 11.4.2  Break-In Operating Conditions 11.4.3 Routine Test Operation 11.5  Start-Up and Shutdown Procedures 11.5.8  Flying Flush Oil Exchange Procedures 11.5.9  Test Operating Stages 11.5.10  Stabilization to Stage Conditions 11.5.11  Stabilized BSFC Measurement Cycle 11.5.12  Data Logging 11.5.13  BC Oil Flush Procedure for BC Oil Before Test   Oil 11.5.14 BSFC Measurement of BC Oil Before Test Oil 11.5.15  Test Oil Flush Procedure 11.5.16  Test Oil Aging 11.5.17  BSFC Measurement of Aged (Phase I) Test Oil 11.5.18  Aging Phase II 11.5.19  BSFC Measurement of Aged (Phase II) Test Oil 11.5.21  BC Oil Flush Procedure for BC Oil After Test Oil 11.5.22  BSFC Measurement for BC Oil After Test Oil 11.5.23  General Test Data Logging Forms 11.5.24  Diagnostic Review Procedures 11.5.25 Determination of Test Results 12  FEI1 and FEI2 Calculations 12.1 Final Test Report 13  Validity Statement 13.1  Report Format 13.2Precision and Bias 14 Precision 14.1 Validity 14.2  Test Stand Calibration Status 14.2.1  Validity Interpretation of Deviant Operational   Conditions 14.2.2 Bias 14.3Keywords 15   Annexes  Role of ASTM TMC Annex A1Detailed Specifications and Drawings of Apparatus Annex A2Oil Heater Cerrobase Refill Procedure Annex A3Engine Part Number Listing Annex A4Flying Flush Checklists Annex A5Safety Precautions Annex A6Report Format Annex A7Statistical Equations for Mean and Standard Deviations Annex A8Oil Sump Full Level Determination Consumption Measurement Calibration Procedure Annex A9Fuel Injector Evaluation Annex A10Pre-test Maintenance Checklist Annex A11Blow-by Ventilation System Requirements Annex A12VIBSJ Abbreviated Length Test Requirements Annex A13   Appendix  Procurement of Test Materials Appendix X1

定价: 0元 / 折扣价: 0

在线阅读 收 藏

The knowledge of vehicle stopping distance or deceleration serves as an additional tool in characterizing the pavement surface skid resistance. When used in conjunctionwith other physical and chemical tests, the skid resistance values derived from these test methods may determine the suitability and adequacy of paving materials or finishing techniques. Improvements in pavement maintenance practices and schedules may result from use of these test methods.The stopping distance or deceleration values measured by these two test methods with the equipment and procedures stated herein do not necessarily agree or correlate directly with other methods of skid-resistance measurements. These test methods are suitable where direct comparison between pavement surfaces are to be made within the same test program.1.1 These test methods cover the measurement of skid resistance on paved surfaces with a passenger vehicle equipped with specified full-scale vehicle tires and using the diagonal braking mode. These test methods include the following:1.1.1 Full-Stop Method This represents the nonsteady-state skid resistance on two diagonally locked wheels, as the vehicle decelerates over a wetted pavement surface under specified limits of static wheel load and from a desired speed. The vehicle shall remain essentially parallel to its original direction of motion.1.1.2 Pulse-Braking MethodThe deceleration resulting from momentary diagonal wheel lockup (pulse braking) is measured. The vehicle decelerates over a wetted pavement surface under specified limits of static wheel load and at a desired speed. The vehicle shall remain essentially parallel to its original direction of motion.1.2 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents: therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A BL has been established for this test to provide a standard against which all other oils can be compared. The BL oil is an SAE 20W-30 grade fully formulated lubricant. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. The test method was developed to compare the test oil to the BL oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIF test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight 3856 kg or less. The tests are conducted using a specified spark-ignition engine with a displacement of 3.6 L (General Motors)4 on a dynamometer test stand. It applies to multi viscosity oils used in these applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct equivalent such as the units for screw threads, National Pipe threads/diameters, tubing size, and single source supply equipment specifications. Additionally, Brake Fuel Consumption (BSFC) is measured in kilograms per kilowatt-hour.1.3 This test method is arranged as follows:  SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4Significance and Use 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Torque Control 6.4Dynamometer 6.4.1Dynamometer Torque 6.4.2Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Fuel Flow Measurement 6.7.2Fuel Temperature and Pressure Control to the Fuel Flow Meter 6.7.3Fuel Temperature and Pressure Control to Engine Fuel Rail 6.7.4Fuel Supply Pumps 6.7.5Fuel Filtering 6.7.6Engine Intake Air Supply 6.8Intake Air Humidity 6.8.1Intake Air Filtration 6.8.2Intake Air Pressure Relief 6.8.3Temperature Measurement 6.9Thermocouple Location 6.9.5AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Exhaust Manifolds 6.11.1Laboratory Exhaust System 6.11.2Exhaust Back Pressure 6.11.3Pressure Measurement and Pressure Sensor Locations 6.12Engine Oil 6.12.2Fuel to Fuel Flow meter 6.12.3Fuel to Engine Fuel Rail 6.12.4Exhaust Back Pressure 6.12.5Intake Air 6.12.6Intake Manifold Vacuum/Absolute Pressure 6.12.7Coolant Flow Differential Pressure 6.12.8Crankcase Pressure 6.12.9Engine Hardware and Related Apparatus 6.13Test Engine Configuration 6.13.1ECU (Power Control Module) 6.13.2Thermostat Block-Off Adapter Plate 6.13.3Wiring Harness 6.13.4Oil Pan 6.13.5Engine Water Pump Adapter Plate 6.13.6Thermostat Block-Off Plate 6.13.7Oil Filter Adapter Plate 6.13.8Modified Throttle Body Assembly 6.13.9Fuel Rail 6.13.10Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.3Engine Assembly Procedure 9.4General Assembly Instructions 9.4.1Bolt Torque Specifications 9.4.2Sealing Compounds 9.4.3Harmonic Balancer 9.4.5Thermostat 9.4.6Coolant Inlet 9.4.7Oil Filter Adapter 9.4.8Dipstick Tube 9.4.9Sensors, Switches, Valves, and Positioner’s 9.4.10Ignition System 9.4.11Fuel Injection System 9.4.12Intake Air System 9.4.13Engine Management System 9.4.14Accessory Drive Units 9.4.15Exhaust Manifolds 9.4.16Engine Flywheel and Guards 9.4.17Lifting of Assembled Engines 9.4.18Engine Mounts 9.4.19Non-Phased Camshaft Gears 9.4.20Internal Coolant Orifice 9.4.21Calibration 10Stand/Engine Calibration 10.1Procedure 10.1.1Reporting of Reference Results 10.1.2Analysis of Reference/Calibration Oils 10.1.3Instrument Calibration 10.2Engine Torque Measurement System 10.2.3Fuel Flow Measurement System 10.2.4Coolant Flow Measurement System 10.2.5Thermocouple and Temperature Measurement System 10.2.6Humidity Measurement System 10.2.7Other Instrumentation 10.2.8Test Procedure 11External Oil System 11.1Flush Effectiveness Demonstration 11.2Preparation for Oil Charge 11.3Initial Engine Start-Up 11.4New Engine Break-In 11.5Oil Charge for Break-In 11.5.2Break-In Operating Conditions 11.5.3Standard Requirements for Break-In 11.5.4Routine Test Operation 11.6Start-Up and Shutdown Procedures 11.6.1Flying Flush Oil Exchange Procedures 11.6.2Test Operating Stages 11.6.3Stabilization to Stage Conditions 11.6.4Stabilized BSFC Measurement Cycle 11.6.5BLB1 Oil Flush Procedure for BL Oil Before Test Run 1 11.6.6BSFC Measurement of BLB1 Oil Before Test Oil 11.6.7BLB2 Oil Flush Procedure for BL Oil Before Test Oil Run 2 11.6.8BSFC Measurement of BLB2 Oil Before Test Oil 11.6.9Percent Delta Calculation for BLB1 vs. BLB2 11.6.10Test Oil Flush Procedure 11.6.11Test Oil Aging, Phase I 11.6.12BSFC Measurement of Aged (Phase I) Test Oil 11.6.13Test Oil Aging, Phase II 11.6.14BSFC Measurement of Aged (Phase II) Test Oil 11.6.15Oil Consumption and Sampling 11.6.16Flush Procedure for BL Oil (BLA) After Test Oil 11.6.17General Test Data Logging Forms 11.6.18Diagnostic Review Procedures 11.6.19Determination of Test Results 12Final Test Report 13Precision and Bias 14Keywords 15Annexes  ASTM Test Monitoring Center Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Monitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Detailed Specifications and Drawings of Apparatus Annex A5Oil Heater Bolton 255 Refill Procedure Annex A6Engine Part Number Listing Annex A7Safety Precautions Annex A8Sequence VIF Test Report Forms and Data Dictionary Annex A9Statistical Equations for Mean and Standard Deviations Annex A10Determining the Oil Sump Full Level & Consumption Annex A11Fuel Injection Evaluation Annex A12Pre-test Maintenance Checklist Annex A13Blow-by Ventilation System Requirements Annex A14Calculation of Test Results Annex A15Calculation of Un-weighted Baseline Shift Annex A16Non-Phased Cam Gear and Position Actuator Installation and GM Short Block Assembly Procedure Annex A17Appendix  Procurement of Test Methods Appendix X11.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 1058元 / 折扣价: 900 加购物车

在线阅读 收 藏

5.1 This test method establishes a standard procedure for the test and provides data that can be related to the force required to unseat the bead of a tire inflated with a specified pressure from the rim. This test method does not establish performance limits or tolerances for tire specifications.1.1 This test method covers the static non-rolling laboratory method of determination of a tubeless tire’s resistance to bead unseating. The test requires the use of a standardized fixture and load machine. The test is conducted using a defined test pressure and method of determining the resultant force to unseat the tire from the rim.1.2 This test method is applicable for all passenger, light truck, and temporary spare tires.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This standard practice establishes a method for conducting accelerated laboratory aging of radial passenger or light truck tires, or both, in an oven.5.2 The goal of this practice is to define a scientifically valid protocol for the accelerated laboratory aging of a tire such that certain of its material properties correlate to those of in-service tires (see Appendix X1). This practice does not establish performance limits or tolerances for tire specifications.1.1 This practice describes a method to laboratory age a new tire in an oven to produce changes in certain chemical and physical properties at the belt edges similar to those of tires in-service (see Appendix X1).1.2 This practice is a precursor to conducting an ASTM standard roadwheel test method for laboratory generation of belt separation in radial passenger car and light truck tires.1.3 This practice may not produce representative chemical and physical property changes in any part of the tire except the belt edge.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers the general design, construction, installation, operation, and testing of shipboard elevators. The requirements contained in this specification apply to automatic, pushbutton, self-service passenger, and store elevators of the winding drum and traction type driven by electric motors. Elevators primarily used for the transportation of personnel shall also be classified as passenger elevators. 1.2 This specification may be issued to obtain any of the following as specified by the ordering information (see 5.1.1). 1.2.1 A preassembled system in a frame structure of adequate strength that will permit installation in an elevator trunk. 1.2.2 A system consisting of all elevator components that can be assembled and installed in an elevator trunk. 1.3 The values stated in inch-pound units are to be regarded as the standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A BL has been established for this test to provide a standard against which all other oils can be compared. The BL oil is an SAE 20W-30 grade fully formulated lubricant. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. The test method was developed to compare the test oil to the BL oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIE test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight 3856 kg or less. The tests are conducted using a specified spark-ignition engine with a displacement of 3.6 L (General Motors)4 on a dynamometer test stand. It applies to multi-viscosity oils used in these applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct equivalent such as the units for screw threads, National Pipe threads/diameters, tubing size, and single source supply equipment specifications. Additionally, Brake Specific Fuel Consumption (BSFC) is measured in kilogram per kilowatt hour.1.3 This test method is arranged as follows:Subject SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Torque Control 6.4Dynamometer 6.4.1Dynamometer Torque 6.4.2Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Fuel Flow Measurement 6.7.2Fuel Temperature and Pressure Control to the Fuel Flow Meter 6.7.3Fuel Temperature and Pressure Control to Engine Fuel Rail 6.7.4Fuel Supply Pumps 6.7.5Fuel Filtering 6.7.6Engine Intake Air Supply 6.8Intake Air Humidity 6.8.1Intake Air Filtration 6.8.2Intake Air Pressure Relief 6.8.3Temperature Measurement 6.9Thermocouple Location 6.9.5AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Exhaust Manifolds 6.11.1Laboratory Exhaust System 6.11.2Exhaust Back Pressure 6.11.3Pressure Measurement and Pressure Sensor Locations 6.12Engine Oil 6.12.2Fuel to Fuel Flow Meter 6.12.3Fuel to Engine Fuel Rail 6.12.4Exhaust Back Pressure 6.12.5Intake Air 6.12.6Intake Manifold Vacuum/Absolute Pressure 6.12.7Coolant Flow Differential Pressure 6.12.8Crankcase Pressure 6.12.9Engine Hardware and Related Apparatus 6.13Test Engine Configuration 6.13.1ECU (Power Control Module) 6.13.2Thermostat Block-Off Adapter Plate 6.13.3Wiring Harness 6.13.4Thermostat Block-Off Plate 6.13.5Oil Filter Adapter Plate 6.13.6Modified Throttle Body Assembly 6.13.7Fuel Rail 6.13.8Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.2Engine Assembly Procedure 9.3General Assembly Instructions 9.3.1Bolt Torque Specifications 9.3.2Sealing Compounds 9.3.3Harmonic Balancer 9.3.5Thermostat 9.3.6Coolant Inlet 9.3.7Oil Filter Adapter 9.3.8Dipstick Tube 9.3.9Sensors, Switches, Valves, and Positioners 9.3.10Ignition System 9.3.11Fuel Injection System 9.3.12Intake Air System 9.3.13Engine Management System 9.3.14Accessory Drive Units 9.3.15Exhaust Manifolds 9.3.16Engine Flywheel and Guards 9.3.17Lifting of Assembled Engines 9.3.18Engine Mounts 9.3.19Non-Phased Camshaft Gears 9.3.20Internal Coolant Orifice 9.3.21Calibration 10Stand/Engine Calibration 10.1Procedure 10.1.1Reporting of Reference Results 10.1.2Analysis of Reference/Calibration Oils 10.1.3Instrument Calibration 10.2Engine Torque Measurement System 10.2.3Fuel Flow Measurement System 10.2.4Coolant Flow Measurement System 10.2.5Thermocouple and Temperature Measurement System 10.2.6Humidity Measurement System 10.2.7Other Instrumentation 10.2.8Test Procedure 11External Oil System 11.1Flush Effectiveness Demonstration 11.2Preparation for Oil Charge 11.3Initial Engine Start-Up 11.4New Engine Break-In 11.5Oil Charge for Break-In 11.5.2Break-In Operating Conditions 11.5.3Standard Requirements for Break-In 11.5.4Routine Test Operation 11.6Start-Up and Shutdown Procedures 11.6.1Flying Flush Oil Exchange Procedures 11.6.2Test Operating Stages 11.6.3Stabilization to Stage Conditions 11.6.4Stabilized BSFC Measurement Cycle 11.6.5BLB1 Oil Flush Procedure for BL Oil Before Test Run 1 11.6.6BSFC Measurement of BLB1 Oil Before Test Oil Run 2 11.6.7BLB2 Oil Flush Procedure for BL Oil Before Test Oil 11.6.8BSFC Measurement of BLB2 Oil Before Test Oil 11.6.9Percent Delta Calculation for BLB1 vs. BLB2 11.6.10Test Oil Flush Procedure 11.6.11Test Oil Aging, Phase I 11.6.12BSFC Measurement of Aged (Phase I) Test Oil 11.6.13Test Oil Aging, Phase II 11.6.14BSFC Measurement of Aged (Phase II) Test Oil 11.6.15Oil Consumption and Sampling 11.6.16Flush Procedure for BL Oil (BLA) After Test Oil 11.6.17General Test Data Logging Forms 11.6.18Diagnostic Review Procedures 11.6.19Determination of Test Results 12Final Test Report 13Precision and Bias 14Keywords 15Annexes  ASTM Test Monitoring Center Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Monitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Detailed Specifications and Drawings of Apparatus Annex A5Oil Heater Bolton 255 Refill Procedure Annex A6Engine Part Number Listing Annex A7Safety Precautions Annex A8Sequence VIE Test Report Forms and Data Dictionary Annex A9Statistical Equations for Mean and Standard Deviations Annex A10Determining the Oil Sump Full Level and Consumption Annex A11Fuel Injection Evaluation Annex A12Pre-test Maintenance Checklist Annex A13Blow-by Ventilation System Requirements Annex A14Calculation of Test Results Annex A15Calculation of Un-weighted Baseline Shift Annex A16Non-Phased Cam Gear and Position Actuator Installation and GM Short Block Assembly Procedure Annex A17Procedure  Procurement of Test Materials Annex A18Alternate Fuel Approval Requirements Annex A19Appendix  Useful Information Appendix X11.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

5.1 Braking traction is an important factor in vehicle control especially on wet pavements. These test methods permit an evaluation of tires for their relative or comparative performance on an ABS-equipped vehicle. See Annex A1 for background information for interpretation of results and meaningful evaluation of tire design features for their influence on wet traction performance.5.2 Although stopping distance is important for vehicle control, the ability to steer the vehicle on a selected trajectory is equally or, in some instances, more important. The wet traction capability of tires influences both of these measured parameters since the tires are the link between the ABS and the pavement and provide the traction or tire adhesion level that permits the ABS to function as intended.5.3 The absolute values of the parameters obtained with these test methods are highly dependent upon the characteristics of the vehicle, the design features of the ABS, the selected test pavement(s), and the environmental and test conditions (for example, ambient temperature, water depths, test speeds) at the test course. A change in any of these factors may change the absolute parameter values and may also change the relative rating of tires so tested.5.4 These test methods are suitable for research and development purposes where tire sets are compared during a brief testing time period. They may not be suitable for regulatory or specification acceptance purposes because the values obtained may not necessarily agree or correlate, either in rank order or absolute value, with those obtained under other conditions (for example, different locations or different seasonal time periods on the same test course).1.1 These test methods cover the measurement of two types of ABS vehicle behavior that reflect differences in tire wet traction performance when the vehicle is fitted with a series of different tire sets to be evaluated.1.1.1 The stopping distance from some selected speed at which the brakes are applied.1.1.2 The lack of control of the vehicle during the braking maneuver. Uncontrollability occurs when the vehicle does not follow the intended trajectory during the period of brake application despite a conscious effort on the part of a skilled driver to maintain trajectory control. Uncontrollability is measured by a series of parameters related to this deviation from the intended trajectory and the motions that the vehicle makes during the stopping maneuver.1.1.3 Although anti-lock braking systems maintain wheel rotation and allow for a high degree of trajectory control, different sets of tires with variations in construction, tread pattern, and tread compound may influence the degree of trajectory control in addition to stopping distance. Thus vehicle uncontrollability is an important evaluation parameter for tire wet traction performance.1.2 These test methods specify that the wet braking traction tests be conducted on two specially prepared test courses: (1) a straight-line (rectilinear) “split-µ” (µ = friction coefficient) test course, with two test lanes deployed along the test course (as traveled by the test vehicle); the two lanes have substantially different friction levels such that the left pair of wheels travels on one surface while the right pair of wheels travels on the other surface; and (2) a curved trajectory constant path radius course with uniform pavement for both wheel lanes.1.3 As with all traction testing where vehicle uncontrollability is a likely outcome, sufficient precautions shall be taken to protect the driver, the vehicle, and the test site facilities from damage due to vehicle traction breakaway during testing. Standard precautions are roll-bars, secure mounting of all internal instrumentation, driver helmet, and secure seat belt harness, etc.1.4 The values stated in SI units are to be regarded as the standard. The values given in parenthesis are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A BL has been established for this test to provide a standard against which all other oils can be compared. The BL oil is an SAE 20W-30 grade fully formulated lubricant. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. The test method was developed to compare the test oil to the BL oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VID test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight 3856 kg or less. The tests are conducted using a specified spark-ignition engine with a displacement of 3.6 L (General Motors)4 on a dynamometer test stand. It applies to multi viscosity grade oils used in these applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct equivalent such as the units for screw threads, National Pipe threads/diameters, tubing size, and single source supply equipment specifications. Additionally, Brake Fuel Consumption (BSFC) is measured in kilograms per kilowatthour.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This test method is arranged as follows:Subject SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Torque Control 6.4Dynamometer 6.4.1Dynamometer Torque 6.4.2Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Fuel Flow Measurement 6.7.2Fuel Temperature and Pressure Control to the Fuel Flowmeter 6.7.3Fuel Temperature and Pressure Control to Engine Fuel Rail 6.7.4Fuel Supply Pumps 6.7.5Fuel Filtering 6.7.6Engine Intake Air Supply 6.8Intake Air Humidity 6.8.1Intake Air Filtration 6.8.2Intake Air Pressure Relief 6.8.3Temperature Measurement 6.9Thermocouple Location 6.9.5AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Exhaust Manifolds 6.11.1Laboratory Exhaust System 6.11.2Exhaust Back Pressure 6.11.3Pressure Measurement and Pressure Sensor Locations 6.12Engine Oil 6.12.2Fuel to Fuel Flowmeter 6.12.3Fuel to Engine Fuel Rail 6.12.4Exhaust Back Pressure 6.12.5Intake Air 6.12.6Intake Manifold Vacuum/Absolute Pressure 6.12.7Coolant Flow Differential Pressure 6.12.8Crankcase Pressure 6.12.9Engine Hardware and Related Apparatus 6.13Test Engine Configuration 6.13.1ECU (Power Control Module) 6.13.2Thermostat Block-Off Adapter Plate 6.13.3Wiring Harness 6.13.4Oil Pan 6.13.5Engine Water Pump Adapter Plate 6.13.6Thermostat Block-Off Plate 6.13.7Oil Filter Adapter Plate 6.13.8Modified Throttle Body Assembly 6.13.9Fuel Rail 6.13.10Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.3Engine Assembly Procedure 9.4General Assembly Instructions 9.4.1Bolt Torque Specifications 9.4.2Sealing Compounds 9.4.3Harmonic Balancer 9.4.5Thermostat 9.4.6Coolant Inlet 9.4.7Oil Filter Adapter 9.4.8Dipstick Tube 9.4.9Sensors, Switches, Valves, and Positioners 9.4.10Ignition System 9.4.11Fuel Injection System 9.4.12Intake Air System 9.4.13Engine Management System 9.4.14Accessory Drive Units 9.4.15Exhaust Manifolds 9.4.16Engine Flywheel and Guards 9.4.17Lifting of Assembled Engines 9.4.18Engine Mounts 9.4.19Non-Phased Camshaft Gears 9.4.20Internal Coolant Orifice 9.4.21Calibration 10Stand/Engine Calibration 10.1Procedure 10.1.1Reporting of Reference Results 10.1.2Instrument Calibration 10.2Engine Torque Measurement System 10.2.3Fuel Flow Measurement System 10.2.4Coolant Flow Measurement System 10.2.5Thermocouple and Temperature Measurement System 10.2.6Humidity Measurement System 10.2.7Other Instrumentation 10.2.8Test Procedure 11External Oil System 11.1Flush Effectiveness Demonstration 11.2Preparation for Oil Charge 11.3Initial Engine Start-Up 11.4New Engine Break-In 11.5Oil Charge for Break-In 11.5.2Break-In Operating Conditions 11.5.3Standard Requirements for Break-In 11.5.4Routine Test Operation 11.6Start-Up and Shutdown Procedures 11.6.1Flying Flush Oil Exchange Procedures 11.6.2Test Operating Stages 11.6.3Stabilization to Stage Conditions 11.6.4Stabilized BSFC Measurement Cycle 11.6.5BLB1 Oil Flush Procedure for BL Oil Before Test Run 1 11.6.6BSFC Measurement of BLB1 Oil Before Test Oil 11.6.7BLB2 Oil Flush Procedure for BL Oil Before Test Oil Run 2 11.6.8BSFC Measurement of BLB2 Oil Before Test Oil 11.6.9Percent Delta Calculation for BLB1 vs. BLB2 11.6.10Test Oil Flush Procedure 11.6.11Test Oil Aging, Phase I 11.6.12BSFC Measurement of Aged (Phase I) Test Oil 11.6.13Test Oil Aging, Phase II 11.6.14BSFC Measurement of Aged (Phase II) Test Oil 11.6.15Oil Consumption and Sampling 11.6.16Flush Procedure for BL Oil (BLA) After Test Oil 11.6.17General Test Data Logging Forms 11.6.18Diagnostic Review Procedures 11.6.19Determination of Test Results 12Report 13Precision and Bias 14Keywords 15Annexes  ASTM Test Monitoring Center: Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Monitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Detailed Specifications and Drawings of Apparatus Annex A5Oil Heater Cerrobase Refill Procedure Annex A6Engine Part Number Listing Annex A7Safety Precautions Annex A8Report Format Annex A9Statistical Equations for Mean and Standard Deviations Annex A10Oil Sump Full Level Determination Consumption Measurement Calibration Procedure Annex A11Fuel Injector Evaluation Annex A12Pre-test Maintenance Checklist Annex A13Blow-by Ventilation System Requirements Annex A14Calculation of Test Results Annex A15Calculation of Unweighted Baseline Shift Annex A16Non–Phased Cam Gear and Position Actuator Installation Procedure Annex A17   Appendix  Procurement of Test Materials Appendix X11.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

5.1 Tires having reduced groove depth are required in some tire tests to determine changes in performance as a tire wears in service. This guide describes the preparation of artificially worn tires. This guide is not meant to replace the development of worn tires through over-the-road travel when naturally worn tires are required. Further refinements of these techniques may be made with increased field experience.5.2 The amount of tread rubber to be removed (groove depth reduction) and the final surface texture are selected according to the requirements of a particular testing program.5.3 The type of test program determines the actual tolerance necessary on the final groove depth. For example, snow traction will require very close control of the final groove depth while vehicle handling tests can accommodate a wider tolerance on the final groove depth.1.1 This guide outlines the preparation of artificially worn tires by tread rubber removal (cutting or grinding, or both) for subsequent performance testing. The purpose is to permit the preparation of test tires with a uniformly reduced tread groove depth and tread geometry that will yield repeatable test results while avoiding the time-consuming and costly over-the-road natural wearing of tires.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Static measurements of tires are important to tire manufacturers, processing engineers, and vehicle design engineers for purposes of commerce (in consumer/vendor agreements) and in tire research and development.4.2 The procedures are sufficiently detailed to achieve commercially acceptable reproducibility among laboratories and may therefore be used for specification, compliance, or reference purposes.4.3 Changes attributable to growth after inflation may be obtained by comparing measurements made immediately after inflation with those made 18 to 24 h later.1.1 This test method covers methods for performing certain mechanical static measurements on tires. The term “static” implies that the tire is not rotating while measurements are being made.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
36 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页