微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The test data obtained with this test method may be used to compare the performance of various tires for the conditions under which they were tested.5.2 This test method is suitable for a variety of quality assurance, research, and development purposes, when tires are to be compared during a single series of tests. The procedure described may not be suitable for regulatory statutes or specification acceptance because the values obtained may not agree, or correlate either in rank order or absolute tread wear performance level, with values obtained on other road surfaces, or on the same surface after additional wear, under other environmental conditions, on other test vehicles, or with results obtained by other test procedures.1.1 This test method covers a procedure to be used to obtain data for determining the changes in tire tread depth over any specified course and test period.1.2 The tire tread depth loss data obtained according to the procedures for this test method may be used to calculate tire tread wear by way of the procedures described in Practice F1016.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Belt edge separation is a tire condition that can be encountered in tire use, particularly in high tire temperature environments.4.2 The goal of this standard is to define a scientifically valid protocol for the laboratory generation of belt edge separation in a tire that has previously completed accelerated laboratory aging as described in Practice F2838. This test method does not establish performance limits or tolerances for tire specifications.4.3 However, as stated in the scope, some tires may not develop belt edge separations under the specified test conditions. They may develop other EOT conditions that are not due to belt edge separation. Also, some tires may not develop any EOT conditions during the course of the test prior to a DCT.1.1 This standard describes a laboratory method to evaluate tires for their tendency to develop belt edge separation, via the use of a standard roadwheel (Practice F551/F551M). This evaluation is conducted on tires that have undergone accelerated laboratory aging as described in Practice F2838.1.2 The End-of-Test (EOT) conditions that can be produced by this method include target (belt-edge separation), non-target (conditions other than belt-related separations that can be developed in passenger and light truck tires through on-road use), and non-representative (conditions that are typically developed only on laboratory roadwheels). There is also the possibility that no visible EOT conditions may be generated during the course of this test. In this instance the user may choose to select a designated completion time (DCT) as the EOT condition.1.3 The values stated in SI units are to be regarded as the standard. The values given in the data log in Appendix X1 in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The groove (void) depth affects the tire’s ability to develop tractive forces in various operating environments. Groove (void) depth also defines the state of wear of a tire and is used in the determination of the rate of wear.1.1 This test method describes standard procedures for measuring the groove and void depth in passenger car tires.1.2 Any mechanical, optical, or electronic device capable of measuring groove (void) depth can be used, but only the contact methodology is described here. Noncontact methodology is beyond the scope of this test method.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
AS 1235-1991 Roof racks and roof bars for passenger vehicles 现行 发布日期 :  1970-01-01 实施日期 : 

定价: 605元 / 折扣价: 515 加购物车

在线阅读 收 藏

5.1 The tread of a tire, the annular band that contacts the pavement, normally contains geometric tread pattern elements that are defined by grooves or voids. These are employed to confer appropriate traction properties to the tire, mainly on wet or snow-covered roads.5.2 One characteristic feature of tire tread patterns that is important for both traction and tire wear behavior is the percent or “fractional” groove area. The groove-area fraction is calculated with respect to the total or gross contact area.1.1 This practice covers a technique for measuring the groove or void area of a tire tread pattern. The void area is measured on the inked impression of a tire tread statically loaded against heavyweight paper on a load platen.1.2 This procedure is intended to serve as a reference practice for measuring groove or tread pattern void areas in a tire-footprint impression. This technique is usable by any laboratory without special equipment although more sophisticated procedures are also commonly employed, such as optical or video camera processes.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty 3856 kg (8500 lb), or less, gross vehicle weight trucks. The tests are conducted using a specified 4.6-L spark-ignition engine on a dynamometer test stand. It applies to multiviscosity grade oils used in these applications. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.1.2 The values stated in either SI units or other units shall be regarded separately as the standard. Within the text, the SI units are stated first with the other units shown in parentheses. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other, without combining values in any way.1.3This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This test method is arranged as follows:Subject SectionIntroduction 1Referenced Documents 2Terminology 3Summary of Test Method 4Significance and Use 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Load Control 6.4Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Engine Intake Air Supply 6.8Temperature Measurement 6.9AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Pressure Measurement and Pressure Sensor Locations 6.12Engine Hardware and Related Apparatus 6.13Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Sealing Compounds 7.5Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.2Engine Assembly Procedure 9.3General Assembly Instructions 9.3.1Bolt Torque Specifications 9.3.2Sealing Compounds 9.3.3New Parts Required for Each New Engine 9.3.4Harmonic Balancer 9.3.5Oil Pan 9.3.6Intake Manifold 9.3.7Camshaft Covers 9.3.8Thermostat 9.3.9Thermostat Housing 9.3.10Coolant Inlet 9.3.11Oil Filter Adapter 9.3.12Dipstick Tube 9.3.13Water Pump 9.3.14Sensors, Switches, Valves, and Positioners 9.3.15Ignition System 9.3.16Fuel Injection System 9.3.17Intake Air System 9.3.18Engine Management System (Spark and Fuel Control) 9.3.19Accessory Drive Units 9.3.20Exhaust Manifolds 9.3.21Engine Flywheel and Guards 9.3.22Lifting of Assembled Engines 9.3.23Engine Mounts 9.3.24Calibration 10BC Pre-Test Verification 10.1Engine/Test Stand Calibration 10.2Procedure 10.2.1Reporting of Reference Results 10.2.2Analysis of Reference Oils 10.2.3Flush Effectiveness Demonstration 10.2.4Instrument Calibration 10.3Engine Load Measurement System 10.3.1Fuel Flow Measurement System 10.3.2Coolant Flow Measurement System 10.3.3Thermocouple and Temperature Measurement System 10.3.4Humidity Measurement System 10.3.5Other Instrumentation 10.3.6Test Procedure 11Preparation for Initial Start-Up of New Engine 11.1Initial Engine Start-Up 11.2Coolant Flush 11.3New Engine Break-In 11.4Routine Test Operation 11.5Start-Up and Shutdown Procedures 11.5.8Flying Flush Oil Exchange Procedures 11.5.9Test Operating Stages 11.5.10Stabilization to Stage Conditions 11.5.11Stabilized BSFC Measurement Cycle 11.5.12Data Logging 11.5.13BC Oil Flush Procedure for BC Oil Before Test Oil 11.5.14BSFC Measurement of BC Oil Before Test Oil 11.5.15Test Oil Flush Procedure 11.5.16Test Oil Aging 11.5.17BSFC Measurement of Aged Test Oil 11.5.18BC Oil Flush Procedure for BC Oil After Test Oil 11.5.19BSFC Measurement for BC Oil After Test Oil 11.5.20General Test Data Logging Forms 11.5.21Diagnostic Review Procedures 11.5.22Determination of Test Results 12Final Test Report 13Validity Statement 13.1Report Format 13.2Precision, Validity, and Bias 14Precision 14.1Validity 14.2Test Stand Calibration Status 14.2.1Validity Interpretation of Deviant Operational Conditions 14.2.2Keywords 15ANNEXESRole of ASTM Test Monitoring Center Annex A1Detailed Specifications and Drawings of Apparatus Annex A2Oil Heater Cerrobase Refill Procedure Annex A3Engine Part Number Listing Annex A4Flying Flush Checklists Annex A5Safety Precautions Annex A6Report Format Annex A7Control Chart Technique for Stand/Engine Severity Adjustment (SA) Annex A8Statistical Equations for Mean and Standard Deviation Annex A9Fuel Injector Evaluation Annex A10Pre-test Maintenance Checklist Annex A11APPENDIXESProcurement of Test Materials Appendix X1Data Dictionary Appendix X2

定价: 0元 / 折扣价: 0

在线阅读 收 藏
36 条记录,每页 15 条,当前第 3 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页