微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Crude petroleum contains sulfur compounds, most of which are removed during refining. However, of the sulfur compounds remaining in the petroleum product, some can have a corroding action on various metals and this corrosivity is not necessarily related directly to the total sulfur content. The effect can vary according to the chemical types of sulfur compounds present. The copper strip corrosion test is designed to assess the relative degree of corrosivity of a petroleum product.1.1 This test method covers the determination of the corrosiveness to copper of aviation gasoline, aviation turbine fuel, automotive gasoline, cleaners (Stoddard) solvent, kerosine, diesel fuel, distillate fuel oil, lubricating oil, and natural gasoline or other hydrocarbons having a vapor pressure no greater than 124 kPa (18 psi) at 37.8 °C. (Warning—Some products, particularly natural gasoline, may have a much higher vapor pressure than would normally be characteristic of automotive or aviation gasolines. For this reason, exercise extreme caution to ensure that the pressure vessel used in this test method and containing natural gasoline or other products of high vapor pressure is not placed in the 100 °C (212 °F) bath. Samples having vapor pressures in excess of 124 kPa (18 psi) may develop sufficient pressures at 100 °C to rupture the pressure vessel. For any sample having a vapor pressure above 124 kPa (18 psi), use Test Method D1838.)1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 1.1, 7.1, and Annex A2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Solvent extraction of soils and sediments can provide information on the availability of petroleum hydrocarbons to leaching, water quality changes, or other site conditions.5.2 Rapid heating, in combination with temperatures in excess of the atmospheric boiling point of acetone/hexane, reduces sample preparation or extraction times.5.3 Reduced amounts of solvents are required and solvent loss due to boiling and evaporation are eliminated by use of closed extraction vessels.1.1 This practice covers the solvent extraction of total petroleum hydrocarbon (TPH) from soils and sediments, using closed vessel microwave heating, for subsequent determination by gravimetric or gas chromatographic techniques.1.2 This practice is recommended only for solid samples that can pass through a ten mesh screen (approximately 2 mm openings).1.3 The solvent extract obtained by this practice may be analyzed for total or specific nonvolatile and semivolatile petroleum hydrocarbons but may require sample clean-up procedures prior to specific compound analysis.1.4 This practice is limited to solvents that are recommended for use in microwave solvent extraction systems.1.5 The values stated in SI units are to be regarded as standard.1.5.1 Exception—The inch-pound values given for units of pressure are to be regarded as standard; SI unit conversions are shown in parentheses.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 9.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 Accurate elemental analyses of samples of petroleum and petroleum products are required for the determination of chemical properties, which are in turn used to establish compliance with commercial and regulatory specifications.1.1 This practice covers information relating to sampling, calibration and validation of X-ray fluorescence instruments for elemental analysis, including all kinds of wavelength dispersive (WDXRF) and energy dispersive (EDXRF) techniques. This practice includes sampling issues such as the selection of storage vessels, transportation, and sub-sampling. Treatment, assembly, and handling of technique-specific sample holders and cups are also included. Technique-specific requirements during analytical measurement and validation of measurement for the determination of trace elements in samples of petroleum and petroleum products are described. For sample mixing, refer to Practice D5854. Petroleum products covered in this practice are considered to be a single phase and exhibit Newtonian characteristics at the point of sampling.1.2 Applicable Test Methods—This practice is applicable to the XRF methods under the jurisdiction of ASTM Subcommittee D02.03 on Elemental Analysis, and those under the jurisdiction of the Energy Institute’s Test Method Standardization Committee (Table 1). Some of these methods are technically equivalent though they may differ in details (Table 2).1.3 Applicable Fluids—This practice is applicable to petroleum and petroleum products with vapor pressures at sampling and storage temperatures less than or equal to 101 kPa (14.7 psi). Use Practice D4057 or IP 475 to sample these materials. Refer to Practice D5842 when sampling materials that also require Reid vapor pressure (RVP) determination.1.4 Non-applicable Fluids—Petroleum products whose vapor pressure at sampling and sample storage conditions are above 101 kPa (14.7 psi) and liquefied gases (that is, LNG, LPG, etc.) are not covered by this practice.1.5 Sampling Methods—The physical sampling and methods of sampling from a primary source are not covered by this guide. It is assumed that samples covered by this practice are a representative sample of the primary source liquid. Refer to Practice D4057 or IP 475 for detailed sampling procedures.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 There is a wide variety of nitration compounds that may be produced and accumulate when oils react with gaseous nitrates formed during the engine combustion process. These nitration products may increase the viscosity, acidity and insolubles in the oil, which may lead to ring sticking and filter plugging. Monitoring of nitration products is therefore an important parameter in determining overall machinery health and should be considered in conjunction with data from other tests such as atomic emission (AE) and atomic absorption (AA) spectroscopy for wear metal analysis (Test Method D5185), physical property tests (Test Methods D445 and D2896), and other FT-IR oil analysis methods for oxidation (Test Method D7414), sulfate by-products (Test Method D7415), and additive depletion (Test Method D7412), which also assess elements of the oil’s condition (1-6).1.1 This test method covers monitoring nitration in gasoline and natural gas engine oils as well as in other types of lubricants where nitration by-products may form due to the combustion process or other routes of formation of nitration compounds.1.2 This test method uses FT-IR spectroscopy for monitoring build-up of nitration by-products in in-service petroleum and hydrocarbon-based lubricants as a result of normal machinery operation. Nitration levels in gasoline and natural gas engine oils rise as combustion by-products react with the oil as a result of exhaust gas recirculation or a blow-by. This test method is designed as a fast, simple spectroscopic check for monitoring of nitration in in-service petroleum and hydrocarbon-based lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of nitration in the oil.1.3 Acquisition of FT-IR spectral data for measuring nitration in in-service oil and lubricant samples is described in Practice D7418. In this test method, measurement and data interpretation parameters for nitration using both direct trend analysis and differential (spectral subtraction) trend analysis are presented.1.4 This test method is based on trending of spectral changes associated with nitration in in-service petroleum and hydrocarbon-based lubricants. For direct trend analysis, values are recorded directly from absorption spectra and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre). For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the spectrum of the reference oil from that of the in-service oil) and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre). Warnings or alarm limits can be set on the basis of a fixed maximum value for a single measurement or, alternatively, can be based on a rate of change of the response measured (1).2 In either case, such maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests or other methods in conjunction with the correlation of nitration changes to equipment performance.NOTE 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.1.5 This test method is for petroleum and hydrocarbon-based lubricants and is not applicable for ester-based oils, including polyol esters or phosphate esters.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 Exception—The unit for wave numbers is cm-1.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The distillation (volatility) characteristics of hydrocarbons and other liquids have an important effect on their safety and performance, especially in the case of fuels and solvents. The boiling range gives information on the composition, the properties, and the behavior of the fuel during storage and use. Volatility is the major determinant of the tendency of a hydrocarbon mixture to produce potentially explosive vapors.5.2 The distillation characteristics are equally important for both automotive and aviation gasolines, affecting starting, warm-up, and tendency to vapor lock at high operating temperatures or high altitude, or both. The presence of high boiling point components in these and other fuels can significantly affect the degree of formation of solid combustion deposits.5.3 Volatility, as it affects the rate of evaporation, is an important factor in the application of many solvents, particularly those used in paints.5.4 Distillation limits are often included in petroleum product specifications, in commercial contract agreements, process refinery/control applications, and for compliance to regulatory rules.5.5 This test method is suitable for setting specifications, for use as an internal quality control tool, and for use in development or research work on hydrocarbon solvents.5.5.1 This test method gives a broad indication of general purity and can also indicate presence of excessive moisture. It will not differentiate between products of similar boiling range.1.1 This test method covers the procedure for the determination of the distillation characteristics of petroleum products and liquid fuels in the range of 20 °C to 400 °C (68 °F to 752 °F) using miniaturized automatic distillation apparatus.1.2 This test method is applicable to such products as: light and middle distillates, automotive spark-ignition engine fuels, automotive spark-ignition engine fuels containing up to 10 % ethanol, aviation gasolines, aviation turbine fuels, all grades of No. 1 and No. 2 diesel fuels (as described in Specification D975), biodiesel (B100), biodiesel blends up to 30 % biodiesel, special petroleum spirits, pure petrochemical compounds, naphthas, white spirits, kerosenes, furnace fuel oils, and distillate marine fuels.NOTE 1: The up to 10 % by volume ethanol limit in spark ignition engine fuels (E10) was the range used in the supporting interlaboratory studies. Spark ignition engine fuels containing > 10 % by volume ethanol and up to 20 % by volume ethanol (E20) may be analyzed, however the stated precision and bias does not apply.1.3 This test method is designed for the analysis of distillate products; it is not applicable to products containing appreciable quantities of residual material.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

5.1 The distillation (volatility) characteristics of hydrocarbons and other liquids have an important effect on their safety and performance, especially in the case of fuels and solvents. The boiling range gives information on the composition, the properties, and the behavior of the fuel during storage and use. Volatility is the major determinant of the tendency of a hydrocarbon mixture to produce potentially explosive vapors.5.2 The distillation characteristics are critically important for both automotive and aviation gasolines, affecting starting, warm-up, and tendency to vapor lock at high operating temperature or at high altitude, or both. The presence of high boiling point components in these and other fuels can significantly affect the degree of formation of solid combustion deposits.5.3 Distillation limits are often included in petroleum product specifications, in commercial contract agreements, process refinery/control applications, and for compliance to regulatory rules.5.4 This test method can be applied to contaminated products or hydrocarbon mixtures. This is valuable for fast product quality screening, refining process monitoring, fuel adulteration control, or other purposes including use as a portable apparatus for field testing.5.5 This test method uses an automatic micro distillation apparatus, provides fast results using small sample volume, and eliminates much of the operator time and subjectivity in comparison to Test Method D86.1.1 This test method covers a procedure for determination of the distillation characteristics of petroleum products and liquid fuels having boiling range between 20 °C to 400 °C at atmospheric pressure using an automatic micro distillation apparatus.1.2 This test method is applicable to such products as; light and middle distillates, automotive spark-ignition engine fuels, automotive spark-ignition engine fuels containing up to 20 % ethanol, aviation gasolines, aviation turbine fuels, regular and low sulfur diesel fuels, biodiesel (B100), biodiesel blends up to 20 % biodiesel, special petroleum spirits, naphthas, white spirits, kerosines, burner fuels, and marine fuels.1.3 The test method is also applicable to hydrocarbons with a narrow boiling range, like organic solvents or oxygenated compounds.1.4 The test method is designed for the analysis of distillate products; it is not applicable to products containing appreciable quantities of residual material.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 The no flow point of a petroleum product is an index of the lowest temperature of its utility for some applications. Flow characteristics, such as no flow point, can be critical for the proper operation of lubricating systems, fuel systems, and pipeline operations.5.2 Petroleum blending operations require precise measurement of the no flow point.5.3 This test method can determine the temperature of the test specimen with a resolution of 0.1 °C at which either crystals have formed or viscosity has increased sufficiently, or both, to impede flow of the petroleum product.5.4 The pour point of a petroleum product is an index of the lowest temperature of its utility for certain applications. Flow characteristics, like pour point, can be critical for the correct operation of lubricating oil systems, fuel systems, and pipeline operations.5.5 Petroleum blending operations require precise measurement of the pour point.5.6 Pour point results from this test method can be reported at either 1 °C or 3 °C intervals.5.7 This test method yields a pour point in a format similar to Test Method D97/IP15 when the 3 °C interval results are reported.5.8 This test method has better repeatability and reproducibility relative to Test Method D97/IP15 as measured in the 2011 interlaboratory test program (see 13.1.2).1.1 This test method covers the determination of the no flow point and pour point of petroleum products, liquid fuels, biodiesel, and biodiesel blends using an automatic instrument.1.2 The measuring range of the apparatus is from –95 °C to 45 °C, however the precision statements were derived only from samples with no flow point temperatures from –77 °C to +2 °C and samples with pour point in the temperature range of –58 °C to +12 °C.1.3 Pour point results from this test method can be reported at 1 °C or 3 °C intervals.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Control over the residue content (required by Specification D1835) is of considerable importance in end-use applications of LPG. In liquid feed systems, residues can lead to troublesome deposits and, in vapor withdrawal systems, residues that are carried over can foul regulating equipment. Residues that remain in vapor-withdrawal systems will accumulate, can be corrosive, and will contaminate subsequent product. Water, particularly if alkaline, can cause failure of regulating equipment and corrosion of metals.5.2 See Appendix X2 for information on the effect of temperature on the measurement of residue in LPG.1.1 This test method covers the determination of extraneous materials weathering above 38 °C that are present in liquefied petroleum gases. The extraneous materials will generally be dissolved in the LPG, but may have phase-separated in some instances.1.2 Liquefied petroleum gases that contain certain anti-icing additives can give erroneous results by this test method.1.3 Although this test method has been used to verify cleanliness and lack of heavy contaminants in propane for many years, it might not be sensitive enough to protect some equipment from operational problems or increased maintenance. A more sensitive test, able to detect lower levels of dissolved contaminants, could be required for some applications.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 For petroleum products and biodiesel fuels, the cloud point is an index of the lowest temperature of their utility for certain applications. Wax crystals of sufficient quantity can plug filters used in some fuel systems.5.2 Petroleum blending operations require precise measurement of the cloud point.5.3 This test method can determine the temperature of the test specimen at which wax crystals have formed sufficiently to be observed as a cloud with a resolution of 0.1 °C.5.4 This test method provides results that, when rounded to the next lower integer, are equivalent to Test Method D2500. Refer to 12.2.5.5 This test method is more precise than Test Method D2500.NOTE 1: According to interlaboratory examination, the reproducibility of this test method has been found to be more precise than Test Method D2500.1.1 This test method covers the description of the determination of the cloud point of petroleum products and biodiesel fuels that are transparent in layers 40 mm in thickness, by an automatic instrument using an optical device.1.2 This test method covers the range of temperatures from −60 °C to +49 °C with temperature resolution of 0.1 °C, however, the range of temperatures included in the 1997 interlaboratory cooperative test program only covered the temperature range of  –56 °C to +34 °C.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The carbon residue value of burner fuel serves as a rough approximation of the tendency of the fuel to form deposits in vaporizing pot-type and sleeve-type burners. Similarly, provided alkyl nitrates are absent (or if present, provided the test is performed on the base fuel without additive) the carbon residue of diesel fuel correlates approximately with combustion chamber deposits.5.2 The carbon residue value of motor oil, while at one time regarded as indicative of the amount of carbonaceous deposits a motor oil would form in the combustion chamber of an engine, is now considered to be of doubtful significance due to the presence of additives in many oils. For example, an ash-forming detergent additive can increase the carbon residue value of an oil yet will generally reduce its tendency to form deposits.5.3 The carbon residue value of gas oil is useful as a guide in the manufacture of gas from gas oil, while carbon residue values of crude oil residuum, cylinder and bright stocks, are useful in the manufacture of lubricants.1.1 This test method covers the determination of the amount of carbon residue (Note 1) left after evaporation and pyrolysis of an oil, and it is intended to provide some indication of relative coke-forming propensity. This test method is generally applicable to relatively nonvolatile petroleum products which partially decompose on distillation at atmospheric pressure. This test method also covers the determination of carbon residue on 10 % (V/V) distillation residues (see Section 10). Petroleum products containing ash-forming constituents as determined by Test Method D482, will have an erroneously high carbon residue, depending upon the amount of ash formed (Notes 2 and 3).NOTE 1: The term carbon residue is used throughout this test method to designate the carbonaceous residue formed during evaporation and pyrolysis of a petroleum product. The residue is not composed entirely of carbon, but is a coke which can be further changed by pyrolysis. The term carbon residue is continued in this test method only in deference to its wide common usage.NOTE 2: Values obtained by this test method are not numerically the same as those obtained by Test Method D189, or Test Method D4530. Approximate correlations have been derived (see Fig. X2.1) but need not apply to all materials which can be tested because the carbon residue test is applicable to a wide variety of petroleum products. The Ramsbottom Carbon Residue test method is limited to those samples that are mobile below 90 °C.NOTE 3: In diesel fuel, the presence of alkyl nitrates such as amyl nitrate, hexyl nitrate, or octyl nitrate, causes a higher carbon residue value than observed in untreated fuel, which can lead to erroneous conclusions as to the coke-forming propensity of the fuel. The presence of alkyl nitrate in the fuel can be detected by Test Method D4046.NOTE 4: The test procedure in Section 10 is being modified to allow the use of a 100 mL volume automated distillation apparatus. No precision data is available for the procedure at this time, but a round robin is being planned to develop precision data. The 250 mL volume bulb distillation method described in Section 10 for determining carbon residue on a 10 % distillation residue is considered the referee test.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 For petroleum products and diesel fuels, the cloud point is an index of the lowest temperature of its utility for certain applications. Wax crystals of sufficient quantity can plug filters used in some fuel systems.5.2 Petroleum blending operations require precise measurement of the cloud point.5.3 This test method can determine the temperature of the test specimen at which wax crystals have formed sufficiently to be observed as a cloud, with a resolution of 0.1 °C.5.4 This test method provides results that when rounded to the next lower integer are equivalent to Test Method D2500.5.5 This test method is more precise than Test Method D2500.1.1 This test method covers the description of the determination of the cloud point of petroleum products and biodiesel fuels that are transparent in layers 40 mm in thickness by an automatic instrument using a linear cooling rate.1.2 This test method covers the range of temperatures from −60 °C to 49 °C with temperature resolution of 0.1 °C, however, the range of temperatures included in the 1997 interlaboratory cooperative test program only covered the temperature range of –56 °C to +34 °C.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Knowledge of the water content of petroleum products can be useful to predict quality and performance characteristics of the product.1.1 This test method covers the determination of water in the concentration from 50 to 1000 mg/kg in liquid petroleum products.1.2 Values stated in SI units are to be regarded as the standard. Inch-pound units are provided for information only.1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements see Section 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The cloud point of petroleum products and biodiesel fuels is an index of the lowest temperature of their utility for certain applications. Wax crystals of sufficient quantity can plug filters used in some fuel systems.5.2 Petroleum blending operations require a precise measurement of the cloud point.5.3 This test method can determine the temperature of the test specimen at which wax crystals have formed sufficiently to be observed as a cloud with a resolution of 0.1 °C.5.4 This test method provides results that are equivalent to Test Method D2500.NOTE 1: This is based on the Test Method D2500 equivalent cloud point in which the 0.1 °C result is rounded to the next lower integer.5.5 This test method determines the cloud point in a shorter period of time than Test Method D2500.NOTE 2: In cases of samples with cloud points near ambient temperatures, time savings may not be realized.5.6 This test method eliminates most of the operator time required of Test Method D2500.5.7 This test method does not require the use of a mechanical refrigeration apparatus.NOTE 3: In certain cases of high ambient temperature, a source of cooling water may be required to measure low-temperature cloud points (see 7.1).1.1 This test method covers the determination of the cloud point of petroleum products and biodiesel fuels that are transparent in layers 40 mm in thickness by an automatic instrument using a constant cooling rate.1.2 This test method covers the range of temperatures from −60 °C to +49 °C with temperature resolution of 0.1 °C, however, the range of temperatures included in the 1997 interlaboratory cooperative test program only covered the temperature range of –56 °C to +34 °C.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The hydrocarbon component distribution of liquefied petroleum gases and propene mixtures is often required for end-use sale of this material. Applications such as chemical feed stocks or fuel require precise compositional data to ensure uniform quality. Trace amounts of some hydrocarbon impurities in these materials can have adverse effects on their use and processing.5.2 The component distribution data of liquefied petroleum gases and propene mixtures can be used to calculate physical properties such as relative density, vapor pressure, and motor octane (see Practice D2598). Precision and accuracy of compositional data are extremely important when these data are used to calculate various properties of these petroleum products.1.1 This test method covers the quantitative determination of individual hydrocarbons in liquefied petroleum (LP) gases and mixtures of propane and propene, excluding high-purity propene in the range of C1 to C5. Component concentrations are determined in the range of 0.01 % to 100 % by volume.1.2 This test method does not fully determine hydrocarbons heavier than C5 and non-hydrocarbon materials, and additional tests may be necessary to fully characterize an LPG sample.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4.1 The user is advised to obtain LPG safety training for the safe operation of this test method procedure and related activities.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
206 条记录,每页 15 条,当前第 2 / 14 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页