微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 The allocation of limited resources (for example, time, money, regulatory oversight, qualified professionals) to any one petroleum release site necessarily influences corrective action decisions at other sites. This has spurred the search for innovative approaches to corrective action decision making, which still ensures that human health and the environment are protected.4.2 The RBCA process presented in this guide is a consistent, streamlined decision process for selecting corrective actions at petroleum release sites. Advantages of the RBCA approach are as follows:4.2.1 Decisions are based on reducing the risk of adverse human or environmental impacts,4.2.2 Site assessment activities are focussed on collecting only that information that is necessary to making risk-based corrective action decisions,4.2.3 Limited resources are focussed on those sites that pose the greatest risk to human health and the environment at any time,4.2.4 The remedial action achieves an acceptable degree of exposure and risk reduction,4.2.5 Compliance can be evaluated relative to site-specific standards applied at site-specific point(s) of compliance,4.2.6 Higher quality, and in some cases faster, cleanups than are currently realized, and4.2.7 A documentation and demonstration that the remedial action is protective of human health, safety, and the environment.4.3 Risk assessment is a developing science. The scientific approach used to develop the RBSL and SSTL may vary by state and user due to regulatory requirements and the use of alternative scientifically based methods.4.4 Activities described in this guide should be conducted by a person familiar with current risk and exposure assessment methodologies.4.5 In order to properly apply the RBCA process, the user should avoid the following:4.5.1 Use of Tier 1 RBSLs as mandated remediation standards rather than screening levels,4.5.2 Restriction of the RBCA process to Tier 1 evaluation only and not allowing Tier 2 or Tier 3 analyses,4.5.3 Placing arbitrary time constraints on the corrective action process; for example, requiring that Tiers 1, 2, and 3 be completed within 30-day time periods that do not reflect the actual urgency of and risks posed by the site,4.5.4 Use of the RBCA process only when active remediation is not technically feasible, rather than a process that is applicable during all phases of corrective action,4.5.5 Requiring the user to achieve technology-based remedial limits (for example, asymptotic levels) prior to requesting the approval for the RBSL or SSTL,4.5.6 The use of predictive modelling that is not supported by available data or knowledge of site conditions,4.5.7 Dictating that corrective action goals can only be achieved through source removal and treatment actions, thereby restricting the use of exposure reduction options, such as engineering and institutional controls,4.5.8 The use of unjustified or inappropriate exposure factors,4.5.9 The use of unjustified or inappropriate toxicity parameters,4.5.10 Neglecting aesthetic and other criteria when determining RBSLs or SSTLs,4.5.11 Not considering the effects of additivity when screening multiple chemicals,4.5.12 Not evaluating options for engineering or institutional controls, exposure point(s), compliance point(s), and carcinogenic risk levels before submitting remedial action plans,4.5.13 Not maintaining engineering or institutional controls, and4.5.14 Requiring continuing monitoring or remedial action at sites that have achieved the RBSL or SSTL.1.1 This is a guide to risk-based corrective action (RBCA), which is a consistent decision-making process for the assessment and response to a petroleum release, based on the protection of human health and the environment. Sites with petroleum release vary greatly in terms of complexity, physical and chemical characteristics, and in the risk that they may pose to human health and the environment. The RBCA process recognizes this diversity, and uses a tiered approach where corrective action activities are tailored to site-specific conditions and risks. While the RBCA process is not limited to a particular class of compounds, this guide emphasizes the application of RBCA to petroleum product releases through the use of the examples. Ecological risk assessment, as discussed in this guide, is a qualitative evaluation of the actual or potential impacts to environmental (nonhuman) receptors. There may be circumstances under which a more detailed ecological risk assessment is necessary (see Ref (1).21.2 The decision process described in this guide integrates risk and exposure assessment practices, as suggested by the United States Environmental Protection Agency (USEPA), with site assessment activities and remedial measure selection to ensure that the chosen action is protective of human health and the environment. The following general sequence of events is prescribed in RBCA, once the process is triggered by the suspicion or confirmation of petroleum release:1.2.1 Performance of a site assessment;1.2.2 Classification of the site by the urgency of initial response;1.2.3 Implementation of an initial response action appropriate for the selected site classification;1.2.4 Comparison of concentrations of chemical(s) of concern at the site with Tier 1 Risk Based Screening Levels (RBSLs) given in a look-up table;1.2.5 Deciding whether further tier evaluation is warranted, if implementation of interim remedial action is warranted or if RBSLs may be applied as remediation target levels;1.2.6 Collection of additional site-specific information as necessary, if further tier evaluation is warranted;1.2.7 Development of site-specific target levels (SSTLs) and point(s) of compliance (Tier 2 evaluation);1.2.8 Comparison of the concentrations of chemical(s) of concern at the site with the Tier 2 evaluation SSTL at the determined point(s) of compliance or source area(s);1.2.9 Deciding whether further tier evaluation is warranted, if implementation of interim remedial action is warranted, or if Tier 2 SSTLs may be applied as remediation target levels;1.2.10 Collection of additional site-specific information as necessary, if further tier evaluation is warranted;1.2.11 Development of SSTL and point(s) of compliance (Tier 3 evaluation);1.2.12 Comparison of the concentrations of chemical(s) of concern at the site at the determined point(s) of compliance or source area(s) with the Tier 3 evaluation SSTL; and1.2.13 Development of a remedial action plan to achieve the SSTL, as applicable.1.3 The guide is organized as follows:1.3.1 Section 2 lists referenced documents,1.3.2 Section 3 defines terminology used in this guide,1.3.3 Section 4 describes the significance and use of this guide,1.3.4 Section 5 is a summary of the tiered approach,1.3.5 Section 6 presents the RBCA procedures in a step-by-step process,1.3.6 Appendix X1 details physical/chemical and toxicological characteristics of petroleum products,1.3.7 Appendix X2 discusses the derivation of a Tier 1 RBSL Look-Up Table and provides an example,1.3.8 Appendix X3 describes the uses of predictive modeling relative to the RBCA process,1.3.9 Appendix X4 discusses considerations for institutional controls, and1.3.10 Appendix X5 provides examples of RBCA applications.1.4 This guide describes an approach for RBCA. It is intended to compliment but not supersede federal, state, and local regulations. Federal, state, or local agency approval may be required to implement the processes outlined in this guide.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is an indicator of the wear characteristics of non-petroleum and petroleum hydraulic fluids operating in a constant volume vane pump. Excessive wear in vane pumps could lead to malfunction of hydraulic systems in critical applications.1.1 This test method covers a constant volume vane pump test procedure operated at 1200 r/min and 13.8 MPa.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exception—There are no SI equivalents for the inch fasteners and inch O-rings that are used in the apparatus in this test method.1.2.2 Exception—In some cases English pressure values are given in parentheses as a safety measure.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The presence and concentration of oil and grease in domestic and industrial wastewater is of concern to the public because of its deleterious aesthetic effect and its impact on aquatic life.5.2 Regulations and standards have been established that require monitoring of TOG and TPH in produced water and wastewater.1.1 This test method covers the determination of total oil and grease, and total petroleum hydrocarbons in produced water and wastewater by an infrared (IR) determination of n-hexane extractable substances from the sample. Included in this estimation of total oil and grease are any other compounds soluble in the n-hexane.1.2 This test method defines total oil and grease in produced water and wastewater as that which is extractable in the test method and measured by IR absorption from 3.34 µm to 3.54 µm (2825 cm-1 to 2994 cm-1). Similarly, this test method defines total petroleum hydrocarbons in produced water and wastewater as that oil and grease which is not adsorbed by silica gel in the test method, and is measured by IR absorption from 3.34 µm to 3.54 µm (2825 cm-1 to 2994 cm-1). Alternative methods for total oil and grease or total petroleum hydrocarbons, or both, can produce differing results.1.3 This method covers the range of 5 mg/L to 175 mg/L for total oil and grease and the range of 5 mg/L to 50 mg/L for total petroleum hydrocarbons. The range may be extended to a lower or higher level by extraction of a larger or smaller sample volume collected separately.1.4 This test method uses horizontal attenuated total reflectance (HATR) with a cubic zirconia crystal.1.5 This test method is intended as a field test only and should be treated as such. This method is not intended to replace laboratory-based regulatory methods currently in use.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Guide D3856 for more information.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Accurate determination of the gravity of petroleum and its products is necessary for the conversion of measured volumes to volumes at the standard temperature of 60 °F (15.56 °C).5.2 This procedure is most suitable for determining the API gravity of low viscosity transparent liquids. This test method can also be used for viscous liquids by allowing sufficient time for the hydrometer to reach temperature equilibrium, and for opaque liquids by employing a suitable meniscus correction. Additionally for both transparent and opaque fluids the readings shall be corrected for the thermal glass expansion effect before correcting to the reference temperature.5.3 When used in connection with bulk oil measurements, volume correction errors are minimized by observing the hydrometer reading at a temperature as close to reference temperature as feasible.5.4 Gravity is a factor governing the quality of crude oils. However, the gravity of a petroleum product is an uncertain indication of its quality. Correlated with other properties, gravity can be used to give approximate hydrocarbon composition and heat of combustion.5.5 Gravity is an important quality indicator for automotive, aviation and marine fuels, where it affects storage, handling and combustion.1.1 This test method covers the determination by means of a glass hydrometer in conjunction with a series of calculations of the API gravity of crude petroleum and petroleum products normally handled as liquids and having a Reid vapor pressure (Test Method D323) of 14.696 psi (101.325 kPa) or less. Values are determined at existing temperatures and corrected to values at 60 °F (15.56 °C), or converted to values at 60 °F, by means of Adjunct to D1250 Standard Guide for the Use of the Joint API and ASTM Adjunct for Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils (API MPMS Chapter 11.1). These tables are not applicable to nonhydrocarbons or essentially pure hydrocarbons such as the aromatics.1.2 The initial values obtained are uncorrected hydrometer readings and not density measurements. Values are measured on a hydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternate calibration temperature effects and to the reference temperature by means of the petroleum measurement tables; values obtained at other than the reference temperature being hydrometer readings and not density measurements.1.3 The initial hydrometer readings determined shall be recorded before performing any calculations. Then the calculations required in Section 9 shall be performed and documented before using the final result in a subsequent calculation procedure (measurement ticket calculation, meter factor calculation, or base prover volume determination).1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statement, see 8.5.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Samples of liquefied petroleum gases are examined by various test methods to determine physical and chemical characteristics and conformance with specifications.5.2 Equipment described by this practice may be suitable for transportation of LPG samples, subject to applicable transportation regulations.1.1 This practice covers equipment and procedures for obtaining a representative sample of specification Liquefied Petroleum Gas (LPG), such as specified in Specification D1835, GPA 2140, and comparable international standards. This standard is applicable to flow-through cylinders with two valves and is not applicable to single valve cylinders or larger LPG sample containers such as those utilized for barbecue grills and/or forklift cylinders.1.2 This practice is suitable for obtaining representative samples for all routine tests for LP gases required by Specification D1835. In the event of a dispute involving sample integrity when sampling for testing against Specification D1835 requirements, Practice D3700 shall be used as the referee sampling procedure.1.3 This practice may also be used for other Natural Gas Liquid (NGL) products that are normally highly volatile, single phase materials (NGL mix, natural gasoline, field butane, etc.), defined in other industry specifications or contractual agreements, where use of open sample containers would risk the loss of volatile components. It is not intended for non-specification products that contain significant quantities of undissolved gases (N2, CO2), free water or other separated phases, such as raw or unprocessed gas/liquids mixtures and related materials. The same equipment can be used for these purposes, but additional precautions are generally needed to obtain representative samples of multiphase products (see Appendix X1 on Sampling Guidelines in Practice D3700).NOTE 1: Practice D3700 describes a recommended practice for obtaining a representative sample of a light hydrocarbon fluid and the subsequent preparation of that sample for laboratory analysis when dissolved gases are present. Use of Practice D1265 will result in a small but predictable low bias for dissolved gases due to the liquid venting procedure to establish the 20 % minimum ullage.1.4 This practice includes recommendations for the location of a sample point in a line or vessel. It is the responsibility of the user to ensure that the sampling point is located so as to obtain a representative sample.1.5 The values stated in SI units are to be regarded as standard.1.5.1 Exception—Non-SI units are shown in parentheses for information only.1.6  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D8145-23a Standard Practice for Sampling of Green Petroleum Coke Active 发布日期 :  1970-01-01 实施日期 : 

1.1 This practice primarily references Practice D2234/D2234M and applies its sampling principles to green petroleum coke. Green petroleum coke is typically more homogeneous than coal and this practice provides specific guidance for the application of D05.05 coal standards to the sampling of green petroleum coke.1.1.1 Practice D2234/D2234M references the four conditions of collecting sample increments: Condition A (Stopped Belt Cut), Condition B (Full-stream Cut), Condition C (Part-stream Cut), and Condition D (Stationary Sampling). This practice directs the user to the appropriate coal standard to apply to each condition, as well as key considerations.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method provides a means of monitoring the sulfur level of various petroleum products and additives. This knowledge can be used to predict performance, handling, or processing properties. In some cases the presence of sulfur components is beneficial to the product and monitoring the depletion of sulfur compounds provides useful information. In other cases the presence of sulfur compounds is detrimental to the processing or use of the product.1.1 This test method covers the determination of total sulfur in liquid petroleum products in concentrations from 0.01 % to 0.4 % by mass (Note 1). A special sulfate analysis procedure is described in Annex A1 that permits the determination of sulfur in concentrations as low as 5 mg/kg.NOTE 1: The comparable lamp method for the determination of sulfur in liquefied petroleum gas is described in Test Method D2784. For the determination of sulfur in heavier petroleum products that cannot be burned in a lamp, see the high pressure decomposition device method (Test Method D129) the quartz tube method (IP 63), or the high-temperature method (Test Method D1552).1.2 The direct burning procedure (Section 9) is applicable to the analysis of such materials as gasoline, kerosine, naphtha, and other liquids that can be burned completely in a wick lamp. The blending procedure (Section 10) is applicable to the analysis of gas oils and distillate fuel oils, naphthenic acids, alkyl phenols, high sulfur content petroleum products, and many other materials that cannot be burned satisfactorily by the direct burning procedure.1.3 Phosphorus compounds normally present in commercial gasoline do not interfere. A correction is given for the small amount of acid resulting from the combustion of the lead anti-knock fluids in gasolines. Appreciable concentrations of acid-forming or base-forming elements from other sources interfere when the titration procedure is employed since no correction is provided in these cases.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Information on the vapor pressures of liquefied petroleum gas products under temperature conditions from 37.8 °C to 70 °C (100 °F to 158 °F) is pertinent to selection of properly designed storage vessels, shipping containers, and customer utilization equipment to ensure safe handling of these products.5.2 Determination of the vapor pressure of liquefied petroleum gas is important for safety reasons to ensure that the maximum operating design pressures of storage, handling, and fuel systems will not be exceeded under normal operating temperature conditions.5.3 For liquefied petroleum gases, vapor pressure can be considered a semi-quantitative measure of the amount of the most volatile material present in the product, and this can give an indication of low temperature operability.1.1 This test method covers the determination of the gauge vapor pressures of liquefied petroleum gas products at temperatures of 37.8 °C (100 °F) up to and including a test temperature of 70 °C (158 °F). (Warning—Extremely flammable gas. May be harmful when inhaled.)NOTE 1: An alternative method for measurement of vapor pressure of liquefied petroleum gases is Test Method D6897.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 1.1 and Annex A2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D4422-19 Standard Test Method for Ash in Analysis of Petroleum Coke Active 发布日期 :  1970-01-01 实施日期 : 

4.1 The ash content is one of the properties used to evaluate petroleum coke and indicates the amount of undesirable residue present. Acceptable ash content varies with the intended use.1.1 This test method covers the determination of the ash content of petroleum coke.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Petroleum waxes in rubber compounds are commonly used to provide protection from degradation by ozone under static conditions, that is, when there is little or no flexing of the rubber products. The mode of action for this protection is (1) migration of the wax through the rubber to the surface of the product and (2) the formation of an ozone impervious film on the surface.4.2 This standard classifies the petroleum waxes on the basis of molecular weight. In general, waxes of lower molecular weight (“paraffinic” or “crystalline”) migrate through the rubber more rapidly and form more brittle film than the higher molecular weight waxes (“microcrystalline”). Wax mixtures and blends are commonly used.4.3 No direct inference of suitability for use in a particular rubber compound is made or implied by the classifications herein.1.1 This classification is intended to establish a classification system and test methods for petroleum waxes used in rubber compounding primarily as a static protective agent or material for unsaturated rubbers such as styrene-butadiene rubber, polyisoprene rubber, natural rubber, chloroprene rubber, acrylonitrile-butadiene rubber, and polybutadiene rubber. These unsaturated rubbers are subject to ozone cracking. Under certain exposure conditions, waxes retard this cracking.1.2 This classification is applicable to petroleum waxes used as process aids in rubber compounding. It is not applicable to nonpetroleum waxes such as carnuba wax, candelille wax, or ceresin wax, nor to synthetic hydrocarbon waxes such as polyethylene wax. These non-petroleum waxes display a different behavior on gas chromatographic analysis than do petroleum waxes.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Source water protection calls for a rapid and reliable optical method to identify and quantify the oil spill contamination, such as water-soluble fraction of aromatic compounds from the BTEX family (benzene, toluene, ethylbenzene, and xylenes) and naphthalene from the polycyclic aromatic hydrocarbon (PAH) group.5.2 This test method identifies the presence of contamination and quantifies the target contamination component(s) to provide a threshold-based alert signal.5.3 This test method can be used by drinking water treatment plant operators and decision makers as a first line of defense for both initially detecting petroleum product spills, as well as tracking attenuation over time, in source water to prevent contaminant uptake into the processed water and treatment infrastructure.1.1 This test method covers the (1) detection of trace level (µg/L range) of oil and petroleum (water-soluble fraction) pollutants in surface and ground drinking water sources, (2) identification of the compounds, and (3) alerting analysts with a contaminant concentration prediction. This test method facilitates identification and quantification from 20 to 1000 µg/L of target contaminants, including: water-soluble fraction of aromatic compounds from the BTEX family (benzene, toluene, ethylbenzene, and xylenes) and naphthalene from the polycyclic aromatic hydrocarbon (PAH) group, referred to as BTEXN in this test method, in water samples with up to 15 mg/L of dissolved organic carbon (DOC). The main approach involves analyzing and characterizing key water intake locations before the treatment and developing the contaminant library. The water-soluble (BTEXN) contaminants are associated with, but not limited to petroleum oils and fuels including commercial diesel fuel, gasoline, kerosene, heavy oil, fuel oil and lubricate oil, etc.1.2 The data sets are analyzed using multivariate methods to test contaminant identification and quantification. The multivariate methods include classification and regression algorithms to analyze fluorescence EEM data acquired in the laboratory. The common goal of these algorithms is to reduce multidimensionality and eliminate noise of fluorescence and background signals. Automated identification-quantification methods linked directly to the instrument acquisition-analysis software are commercially available.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM D5709-22 Standard Test Method for Sieve Analysis of Petroleum Coke Active 发布日期 :  1970-01-01 实施日期 : 

5.1 The test method concerns the sieving of coke into designated size fractions for the purpose of characterizing the material as to its particle size distribution. It requires the use of standard sieves, standard sampling methods, standard sample preparation methods, and a minimum initial sample mass based on lot topsize. Suggestions are given for industry typical sieve stacks for both green and calcined petroleum coke.5.2 Particle size distribution is significant in that many physical characteristics of a coke are related to such a distribution including bulk density and surface area. Nuisance characteristics, such as excessive fines in a lot, can also be controlled.5.3 Results from this test method are useful in determining whether a coke lot meets purchase specifications, for classification purposes, and for quality control. The results of this test method can also be used to predict the performance of a particular lot of coke in a process.1.1 This test method details a procedure for performing particle size distribution analysis by dry sieve testing on green petroleum coke with a topsize of no more than 75 mm and calcined petroleum coke with a topsize of no more than 25 mm. Size fractions go down to and include 4.75 mm for green petroleum coke and 75 μm for calcined petroleum coke.NOTE 1: To convert units, see Table 1 on nominal dimensions in Specification E11. For example, 75 mm is approximately equivalent to a nominal sieve opening of 3 in. and 25 mm to a nominal sieve opening of 1 in. Likewise, 4.75 mm can be converted to approximately 0.187 in. and 75 microns to 0.0029 in.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 The sieve size is reported as U.S.A. standard test series in any units listed in Table 1 on nominal dimensions of Specification E11, or their commercial size equivalents.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The pour point of a petroleum product is an index of the lowest temperature of its utility for certain applications. Flow characteristics, such as pour point, can be critical for the correct operation of lubricating systems, fuel systems, and pipeline operations.5.2 Petroleum blending operations require precise measurement of the pour point.5.3 This test method can determine the temperature of the test specimen with a resolution of 0.1 °C at which either crystals have formed or viscosity increases sufficiently to impede movement of the petroleum product.5.4 This test method yields a pour point in a format similar to Test Method D97/IP15 when the 3 °C interval results are reported.NOTE 2: Since some users may wish to report their results in a format similar to Test Method D97 (in 3 °C intervals) the precisions were derived for the temperatures rounded to the 3 °C intervals. For statements on bias relative to Test Method D97, see 13.3.5.5 This test method has better repeatability and comparable reproducibility relative to Test Method D97 as measured in the 1992 interlaboratory program. (See Section 13.)1.1 This test method covers the determination of pour point of petroleum products by an automatic instrument that continuously rotates the test specimen against a suspended detection device during cooling of the test specimen.1.2 This test method is designed to cover the range of temperatures from −57 °C to +51 °C; however, the range of temperatures included in the 1992 interlaboratory program only covered the temperature range of −39 °C to +6 °C (see 13.4).1.3 This test method determines the no-flow point of petroleum products by detection of the crystal structure or viscosity increase, or both, in the sample that is sufficient to impede flow of the specimen.1.4 This test method is not intended for use with crude oils.NOTE 1: The applicability of this test method on residual fuel samples has not been verified. For further information on applicability, refer to 13.4.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The determination of the carbon number distribution of petroleum waxes and the normal and non-normal hydrocarbons in each can be used for control of production processes as well as a guide to performance in many end uses.5.2 Data resulting from this test method are particularly useful in evaluating petroleum waxes for use in rubber formulations.1.1 This test method covers the quantitative determination of the carbon number distribution of petroleum waxes in the range from n-C17 through n-C44 by gas chromatography using internal standardization. In addition, the content of normal and non-normal hydrocarbons for each carbon number is also determined. Material with a carbon number above n-C44 is determined by its difference from 100 % by mass and reported as C45+.1.2 This test method is applicable to petroleum derived waxes, including blends of waxes. This test method is not applicable to oxygenated waxes, such as synthetic polyethylene glycols (for example, Carbowax2), or natural products such as beeswax or carnauba.1.3 This test method is not directly applicable to waxes with oil content greater than 10 % as determined by Test Method D721.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to consult and establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 A knowledge of the composition of hydrocarbon refinery streams is useful for process control and quality assurance.5.2 Aromatics in gasoline are soon to be limited by federal mandate. This test method can be used to provide such information.1.1 This test method covers the determination of paraffins, naphthenes, and aromatics by carbon number in low olefinic hydrocarbon streams having final boiling points of 200 °C or less. Hydrocarbons with boiling points greater than 200 °C and less than 270 °C are reported as a single group. Olefins, if present, are hydrogenated and the resultant saturates are included in the paraffin and naphthene distribution. Aromatics boiling at C9 and above are reported as a single aromatic group.1.2 This test method is not intended to determine individual components except for benzene and toluene that are the only C6 and C7 aromatics, respectively, and cyclopentane that is the only C5 naphthene. The lower limit of detection for a single hydrocarbon component or group is 0.05 % by mass.1.3 This test method is applicable to hydrocarbon mixtures including virgin, catalytically converted, thermally converted, alkylated and blended naphtha.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4.1 The abbreviation for SI unit “coulomb” is “C”.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8 and Table 1.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
194 条记录,每页 15 条,当前第 1 / 13 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页