微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

Fan-powered radon reduction systems built into new residential buildings according to this practice are likely to reduce elevated indoor radon levels, where soil-gas is the source of radon, to below 2.0 picocuries per litre (pCi/L) (75 becquerels of radon per cubic metre (Bq/m3)) in occupiable spaces. Passive radon reduction systems do not always reduce such indoor radon concentrations to below 2.0 picocuries per litre (pCi/L) (75 becquerels of radon per cubic metre (Bq/m3)) in occupiable spaces. When a passive system, built according to this practice, does not achieve acceptable radon concentrations, that system should be converted to fan-powered operation to significantly improve its performance. Exceptions—New residential buildings built on expansive soil and karst may require additional measures, not included in this practice, to achieve acceptable radon reduction. Consider consulting with a soil/geotechnical specialist, a qualified foundation structural engineer and contacting the state’s radon in air specialist for up-to-date information about construction methods. Names of your state radon specialist are available from the U.S. EPA website (http://www.epa.gov/radon).Note 1—Residences using private wells can have elevated indoor radon concentrations due to radon that out-gasses from the water used indoors, like water used to shower (7). Consider contacting your state’s radon specialist for up-to-date information on available methods for removing radon from private well water.All soil depressurization radon reduction methods require a gas-permeable layer which can be depressurized. The gas-permeable layer is positioned under the building’s sealed ground cover. In the case of the active soil depressurization system, a radon fan pulls air up the vent stack to depressurize the gas-permeable layer. In the case of a passive soil depressurization system, when air in the vent stack is warmer than that outdoors, the warmer air rises in the stack causing the gas-permeable layer to be depressurized. The passive system depressurizes the gas-permeable layer intermittently; the fan-powered system depressurizes the gas-permeable layer continuously. The performance of gas-permeable layers depends on their design; see 6.4.1.3. A radon reduction system that operates passively requires the most efficient gas-permeable layer.U.S. EPA recommended action level concerning indoor radon states that the radon concentration should always be reduced if it is 4 picocuries per litre (pCi/L) (150 becquerels of radon per cubic metre (Bq/m3)) or above in occupiable spaces. According to U.S. EPA there is also reduced risk when radon concentrations in indoor air are lowered to below 2.0 picocuries per litre (pCi/L) (75 becquerels of radon per cubic metre (Bq/m3)) in occupiable spaces (4).Significant benefit is obtained from reducing indoor radon concentrations to below 4 pCi/L (150 Bq/m3). According to the U.S. EPA’s risk assessment (8), about 62 out of 1000 people who smoke will die from a lifetime’s average radon exposure of 4 pCi/L (150 Bq/m3); for people who never smoked about 7 out of 1000 will people die from the same lifetime exposure. Smokers’ lifetime risk of death from lung cancer is reduced by about half (50 %) when their average radon exposure is reduced from 4 to 2 pCi/L (150 to 75 Bq/m3); their risk is reduced by about two-thirds (67 %) when their exposure is reduced from 4 to 1.3 pCi/L (150 to 75 Bq/m3). Never-smokers’ lifetime risk of death from lung cancer is reduced by about 40 % when their average radon exposure is reduced from 4 to 2 pCi/L (150 to 75 Bq/m3); the risk is reduced by 70 % when their exposure is reduced from 4 to 1.3 pCi/L (150 to 50 Bq/m3). U.S. EPA recommended action level about reducing radon to less that 4 pCi/L (150 Bq/m3) is “Radon levels less than 4 pCi/L (150 Bq/m3) still pose a risk, and in many cases may be reduced” (4). U.S. EPA recommendation is to “Consider fixing between 2 and 4 pCi/L (75 and 150 Bq/m3).” (See radon reduction goals in 1.4 and 6.11.4.)This practice assumes that the customer is informed about the risks of lung cancer from exposure to radon and able to establish by contract the maximum acceptable indoor radon concentration allowed in the new residential building. Because there are goals and recommended action level but no government mandated maximum indoor radon concentration for new residential construction in the United States customers and their agents should negotiate to establish by contract the maximum acceptable indoor radon concentration. The customer should keep in mind that the building’s indoor radon concentration can never be less than the radon concentration in the outdoor air in the vicinity of the building; that establishing target radon levels below 2 pCi/L (75 Bq/m3) could be more expensive; and that radon concentrations below 2 pCi/L (75 Bq/m3) are difficult to measure using current commercially available technology. (See (4, 7), 1.4, and 6.11.4.)The negotiated acceptable radon concentration defined by this standard can vary from customer to customer and contract to contract. The owner’s goal for radon reduction should be known and considered before the radon system design is specified. The construction choices for void space in the gas-permeable layer; vent stack pipe diameter and route; radon fan capacity; and building features influence the radon reduction system’s performance. (See 1.4, 3.2.1, 5.3, 5.4, 5.5, and 6.4.1.3.)This practice offers organized information about radon reduction methods. This practice cannot replace education and experience and should be used in conjunction with trained and certified radon practitioner's judgment. Not all aspects of this practice may be applicable in all circumstances.This practice is not intended, by itself, to replace the standard of care by which adequacy of a professional service may be judged, nor should this practice alone be applied without consideration of a project's unique aspects.The word “Standard” in the title of this practice means that the document has been approved through the ASTM consensus process.Reliable methods for predicting indoor radon concentrations for a particular residential building prior to its construction are not available at this time. If the house is in contact with the ground, it is possible for radon gas to be present. Not all houses will need a radon system; nationally, 1 out of 15, or 7 % of the houses have indoor radon concentrations greater than 4 pCi/L (150 Bq/m3). In the highest state 71 % of the houses have indoor radon greater than 4 pCi/L (150 Bq/m3). In fifteen states less than 10 % of the houses are over 4 pCi/L (150 Bq/m3). In six states 40 % or more of the houses have indoor radon over 4 pCi/L (150 Bq/m3). State and local jurisdictions and individual owners are in the best position to decide where houses with radon reduction features should be built.AbstractThis practice provides the design details and construction methods for two built-in soil depressurization radon control and reduction systems appropriate for use in new low-rise residential buildings. Depending on the configuration of the radon vent stack installed, the radon system's operation may have a pipe route appropriate for a fan-powered radon reduction system, or have a more efficient pipe route appropriate for passively operated radon reduction systems. This practice covers special features for soil depressurization radon reduction systems including (1) slab-on-grade, basement and crawlspace foundation types with cast concrete slab and membrane ground covers, (2) sub-slab and submembrane gas-permeable layers and their drainage, (3) radon system piping, (4) radon discharge separation from openings into occupiable space, (5) radon fan installation, (6) electrical requirements, (7) radon system monitor installation, (8) labeling, (9) radon testing, and (10) system documentation.1.1 This practice covers the design and construction of two radon control options for use in new low-rise residential buildings. These unobtrusive (built-in) soil depressurization options are installed with a pipe route appropriate for their intended initial mode of operation, that is, fan-powered or passive. One of these pipe routes should be installed during a residential building’s initial construction. Specifications for the critical gas-permeable layer, the radon system’s piping, and radon entry pathway reduction are comprehensive and common to both pipe routes.1.1.1 The first option has a pipe route appropriate for a fan-powered radon reduction system. The radon fan should be installed after (1) an initial radon test result reveals unacceptable radon concentrations and therefore a need for an operating radon fan, or (2) the owner has specified an operating radon fan, as well as acceptable radon test results before occupancy. Fan operated soil depressurization radon systems reduce indoor radon concentrations up to 99 %.1.1.2 The second option has a more efficient pipe route appropriate for passively operated radon reduction systems. Passively operated radon reduction systems provide radon reductions of up to 50 %. When the radon test results for a building with an operating passive system are not acceptable, that system should be converted to fan-powered operation. Radon systems with pipe routes installed for passive operation can be converted easily to fan-powered operation; such fan operated systems reduce indoor radon concentrations up to 99 %.1.2 The options provide different benefits:1.2.1 The option using the pipe route for fan-powered operation is intended for builders with customers who want maximum unobtrusive built-in radon reduction and documented evidence of an effective radon reduction system before a residential building is occupied. Radon systems with fan-powered type pipe routes allow the greatest architectural freedom for vent stack routing and fan location.1.2.2 The option using the pipe route for passive operation is intended for builders and their customers who want unobtrusive built-in radon reduction with the lowest possible operating cost, and documented evidence of acceptable radon system performance before occupancy. If a passive system’s radon reduction is unacceptable, its performance can be significantly increased by converting it to fan-powered operation.1.3 Fan-powered, soil depressurization, radon-reduction techniques, such as those specified in this practice, have been used successfully for slab-on-grade, basement, and crawlspace foundations throughout the world.1.4 Radon in air testing is used to assure the effectiveness of these soil depressurization radon systems. The U.S. national goal for indoor radon concentration, established by the U.S. Congress in the 1988 Indoor Radon Abatement Act, is to reduce indoor radon as close to the levels of outside air as is practicable. The radon concentration in outside air is assumed to be 0.4 picocuries per litre (pCi/l) (15 Becquerels per cubic metre (Bq/m3)); the U.S.’s average radon concentration in indoor air is 1.3 pCi/L (50 Bq/m3). The goal of this practice is to make available new residential buildings with indoor radon concentrations below 2.0 pCi/L (75 Bq/m3) in occupiable spaces.1.5 This practice is intended to assist owners, designers, builders, building officials and others who design, manage, and inspect radon systems and their construction for new low-rise residential buildings.1.6 This practice can be used as a model set of practices, which can be adopted or modified by state and local jurisdictions, to fulfill objectives of their residential building codes and regulations. This practice also can be used as a reference for the federal, state, and local health officials and radiation protection agencies.1.7 The new dwelling units covered by this practice have never been occupied. Radon reduction for existing low rise residential buildings is covered by Practice E 2121, or by state and local building codes and radiation protection regulations.1.8 Fan-powered soil depressurization, the principal strategy described in this practice, offers the most effective and most reliable radon reduction of all currently available strategies. Historically, far more fan-powered soil depressurization radon reduction systems have been successfully installed and operated than all other radon reduction methods combined. These methods are not the only methods for reducing indoor radon concentrations (1-3).1.9 Section 7 is Occupational Radon Exposure and Worker Safety.1.10 Appendix X1 is Principles of Operation for Fan-Powered Soil Depressurization Radon Reduction.1.11 Appendix X2 is a Summary of Practice E 1465 Requirements for Installation of Radon Reduction Systems in New Low Rise Residential Building.1.12 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Sounding tubes may be fabricated from 11/2 NPS or larger. Only when otherwise specified, Schedule 40 components, manufactured from the list of material indicated in Practice F1155 and Specification A53/A53M, Grade S or Grade ERW. In addition, sounding tubes may be fabricated in stainless steel for stainless steel tanks.5.1.1 Sounding tubes passing through or terminating in fuel tanks, potable water tanks, or clean salt water ballast tanks should be constructed of 70-30 copper nickel, but other suitable material is acceptable.5.2 Striker plates shall be fabricated in accordance with Specification A36/A36M.5.3 The fittings shall be designed in accordance with ASME B16.5, ASME B16.9, ASME B16.28, or ASME B16.11 as applicable (see Table 21 in Practice F1155), and the installation shall be in accordance with ASME B31.1 as modified by Specification F722. These standards cover the fitting tolerances.5.4 Some cargo may preclude the use of materials specified in this guide. However, configuration examples are applicable for all applications.5.5 When a sounding tube is combined with the air escape, either three 11/4-in. (approximately 30-mm) diameter holes approximately 12 in. (305 mm) from the tank top equally spaced or six 1/2-in. (approximately 15-mm) diameter holes approximately 6 in. (150 mm) from the tank top equally spaced can be used for perforations. See Fig. 2.5.6 Figs. 1-4 are guidance details.FIG. 1 Type I Sounding TubeFIG. 2 Type II Sounding TubeFIG. 3 Type III Sounding TubeFIG. 4 Type IV Sounding Tube1.1 This guide covers design and construction criteria for striker plates and sounding tubes, excluding deck penetrations and caps, for use with sounding rods or tapes in freshwater, saltwater, and oil tanks.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

A standard recognizes that effectiveness, safety, and durability of a RBS depends not only on the quality of the materials, but also on their proper installation.Improper installation of a RBS can reduce their thermal effectiveness, cause fire risks and other unsafe conditions, and promote deterioration of the structure in which they are installed. Specific hazards that can result from improper installation include fires caused by (1) heat buildup in recessed lighting fixtures, (2) deterioration or failure of electrical wiring components, and (3) deterioration in wood structures and paint failure due to moisture accumulation.This standard provides recommendations for the installation of radiant barrier materials in a safe and effective manner. Actual conditions in existing buildings may vary greatly and in some cases additional care should be taken to ensure safe and effective installation.This standard presents requirements that are general in nature and considered practical. They are not intended as specific recommendations. The user should consult the manufacturer for recommended application methods.1.1 This standard has been prepared for use by the designer, specifier, and installer of RBS (radiant barrier systems) for use in building construction. The scope is limited to recommendations relative to the use and installation of RBS including a surface(s) normally having a far-infrared emittance of 0.1 or less, such as metallic foil or metallic deposits unmounted or mounted on substrates. Some examples that this standard is intended to address include: (1) low emittance surfaces in vented or unvented building envelope cavities intended to retard radiant transfer across the airspace; (2) low emittance surfaces at interior building surfaces intended to retard radiant transfer to or from building inhabitants; and (3) low emittance surfaces at interior building surfaces intended to reduce radiant transfer to or from radiant heating or cooling systems. See for typical examples of use.1.2 This standard covers the installation process from pre-installation inspection through post-installation procedure. It does not cover the production of the radiant barrier materials. (See Specification C1313.)1.3 This standard is not intended to replace the manufacturer's installation instructions, but shall be used in conjunction with such instructions. This practice is not intended to supercede local, state, or federal codes.1.4 This standard assumes that the installer possesses a good working knowledge of the application codes and regulations, safety practices, tools, equipment, and methods necessary for the installation of radiant barrier materials. It also assumes that the installer understands the fundamentals of building construction that affect the installation of RBS.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Sections and .1.5 When the installation or use of radiant barrier materials, accessories and systems, may pose safety or health problems, the manufacturer shall provide the user appropriate current information regarding any known problems associated with the recommended use of the company's products and shall also recommend protective measures to be employed in their safe utilization. The user shall establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice applies to the materials and methods used in the construction of AAC masonry. It directly references the AAC materials standards under the jurisdiction of ASTM Committee C27 and the workmanship requirements of TMS 602 and supplements those workmanship requirements with additional requirements particular to AAC masonry.1.1 This practice applies to construction and testing of masonry made of AAC units. It includes or references terminology, material specifications, and methods of test. It references specifications and test methods.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Warning tracks are playing surfaces located on the margins of the playing area for the purpose of providing a warning to the player that he or she is approaching a hazard (commonly a fence) or out-of-bounds area. In order to provide for an effective warning track surface, the warning track must be constructed and maintained in such a manner so that the player can sense the change in texture from the regular playing surface and the warning track without having to look. This feature is very important in that the player is often visually focused on the ball during play and would not be looking at the ground as he/she is running toward the warning track. The warning track must also be constructed and maintained in such a manner that the warning track itself, or the surface transition, does not pose a hazard to the players.4.2 The warning track areas of sports fields should provide a uniform surface with good footing. The change in surface texture of the warning track from the surrounding playing surface must be of enough contrast such that the player can sense the change without looking. Most often, warning track surfaces are devoid of turf or other vegetation. However, turfed warning track areas may be used in instances where such purpose is to “warn” the player of an impending hazard where the primary playing surface is a skinned area. This may be the case in softball where the entire infield playing surface is a skinned area and a turfed warning track is used along the first base and third base fencelines. Undulations, rough surface, hard or soft surface, weeds, stones, debris, wets spots, etc. detract from a good, safe warning track. The safety and effectiveness of the warning track is largely affected by construction and maintenance procedures and this guide addresses those procedures.4.2.1 During construction, consideration should be given to factors such as the physical and chemical properties of materials used in the area, freedom from stones, sticks, and other debris, and surface drainage and internal drainage. Consideration should also be given to the surface elevation such that a drastic change is not produced by the transition from the playing surface to the warning track area which may create a tripping or falling hazard.4.2.2 Maintenance practices that influence the playability of the surface include edging, dragging, rolling, watering, vegetation control, and removal of stones and debris that may adversely affect play and safety.4.3 Those responsible for the design, construction, or maintenance, or a combination thereof, of baseball and softball fields, or play areas where the need for a warning track area has been identified, will benefit from this guide.1.1 This guide covers techniques that are appropriate for the construction and maintenance of warning track areas on sports fields. This guide provides guidance for the selection of materials, such as soil and sand for use in constructing or reconditioning warning track areas and for selection of management practices that will maintain a safe and functioning warning track. Although this guide has applications to all sports where a warning track surface may be required or desired, it has specific applications to baseball/softball.1.2 This guide does not address synthetic warning tracks such as rubberized surfaces, artificial turf, or paved surfaces.1.3 Decisions in selecting construction and maintenance techniques are influenced by local soil types, climatic factors, level of play, budget, and training/ability of management personnel.1.4 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.5 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
273 条记录,每页 15 条,当前第 1 / 19 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页