微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
ASTM E210-63(2016) Standard Specification for Microscope Objective Thread (Withdrawn 2022) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

4.1 Different electroplating systems can be corroded under the same conditions for the same length of time. Differences in the average values of the radius or half-width or of penetration into an underlying metal layer are significant measures of the relative corrosion resistance of the systems. Thus, if the pit radii are substantially higher on samples with a given electroplating system, when compared to other systems, a tendency for earlier failure of the former by formation of visible pits is indicated. If penetration into the semi-bright nickel layer is substantially higher, a tendency for earlier failure by corrosion of basis metal is evident.1.1 This test method provides a means for measuring the average dimensions and number of corrosion sites in an electroplated decorative nickel plus chromium or copper plus nickel plus chromium coating on steel after the coating has been subjected to corrosion tests. This test method is useful for comparing the relative corrosion resistances of different electroplating systems and for comparing the relative corrosivities of different corrosive environments. The numbers and sizes of corrosion sites are related to deterioration of appearance. Penetration of the electroplated coatings leads to appearance of basis metal corrosion products.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers a procedure for the nondestructive measurement of the thickness of transparent anodic coatings on aluminum articles by means of the light-section microscope. This method may also be used to measure the thickness of any transparent coating on an opaque reflective surface.1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The traditional resolution test of the SEM requires, as a first step, a photomicrograph of a fine particulate sample taken at a high magnification. The operator is required to measure a distance on the photomicrograph between two adjacent, but separate edges. These edges are usually less than one millimetre apart. Their image quality is often less than optimum limited by the S/N ratio of a beam with such a small diameter and low current. Operator judgment is dependent on the individual acuity of the person making the measurement and can vary significantly.4.2 Use of this practice results in SEM electron beam size characterization which is significantly more reproducible than the traditional resolution test using a fine particulate sample.1.1 This practice provides a reproducible means by which one aspect of the performance of a scanning electron microscope (SEM) may be characterized. The resolution of an SEM depends on many factors, some of which are electron beam voltage and current, lens aberrations, contrast in the specimen, and operator-instrument-material interaction. However, the resolution for any set of conditions is limited by the size of the electron beam. This size can be quantified through the measurement of an effective apparent edge sharpness for a number of materials, two of which are suggested. This practice requires an SEM with the capability to perform line-scan traces, for example, Y-deflection waveform generation, for the suggested materials. The range of SEM magnification at which this practice is of utility is from 1000 to 50 000 × . Higher magnifications may be attempted, but difficulty in making precise measurements can be expected.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method is useful for accurate measurement of from a wide variety of glass samples, whose ranges from 1.48–1.55. 4.2 It should be recognized that measurement of surface fragments, especially from float glass samples, can result in refractive index values which are different than the refractive index values of fragments from the interior of (for example, bulk) the same broken glass source (5). 4.3 The precision of this test method shall be established in each laboratory that employs it as part of the validation protocol (see Section 9). 4.4 It should be recognized that this technique measures the refractive index of the glass at the match point temperature, which will be higher than ambient temperature, and thus, may give different values from those obtained by other methods, which measure the refractive index at room temperature. 1.1 This test method covers a procedure for measuring and comparing the refractive index (η) at a fixed wavelength (λ) and temperature (T) ( ) of glass from known sources to recovered fragments from a questioned source. 1.2 This test method does not include the measurement of optical dispersion or the measurement of refractive index ( ) at any other wavelength other than the Sodium D line ( ). This method employs a narrow band pass filter at 589 nm, but other filters could be employed using the described method, allowing the to be determined at other wavelengths, and therefore, also allowing for the dispersion value to be calculated. 1.3 Alternative methods for the determination of are listed in Refs (1-5).2 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard cannot replace knowledge, skills, or abilities acquired through education, training, and experience and is to be used in conjunction with professional judgment by individuals with such discipline-specific knowledge, skills, and abilities. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

Careful use of this practice can yield calibrated z-magnifications traceable to the SI unit of length with uncertainties (k = 2) of approximately 7 % over height ranges of approximately 1 nm.1.1 This practice covers a measurement procedure to calibrate the z-scale of an atomic force microscope using Si(111) monatomic step height specimens.1.2 Applications This procedure is applicable either in ambient or vacuum condition when the atomic force microscope (AFM) is operated at its highest levels of z-magnification, that is, in the nanometer and sub-nanometer ranges of z-displacement. These ranges of measurement are required when the AFM is used to measure the surfaces of semiconductors, optical surfaces, and other high technology components.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

The thickness of a coating is often critical to its performance.For some coating-substrate combinations, the interference microscope method is a reliable method for measuring coating thickness.This test method is suitable for specification acceptance.1.1 This test method covers the measurement of the thickness of transparent metal oxide and metallic coatings by utilizing a double-beam interference microscope.1.2 The test method requires that the specimen surface or surfaces be sufficiently mirrorlike to form recognizable fringes.1.3 This test method can be used nondestructively to measure 1 to 10μ m thick transparent coatings, such as anodic coatings on aluminum. The test method is used destructively for 0.1 to 10 μm thick opaque coatings by stripping a portion of the coating and measuring the step height between the coating and the exposed substrate. The stripping method can also be used to measure 0.2 to 10 μm thick anodic coatings on aluminum.1.4 The test method is usable as a reference method for the measurement of the thickness of the anodic film on aluminum or of metallic coatings when the technique includes complete stripping of a portion of the coating without attack of the substrate. For anodic films on aluminum, the thickness must be greater than 0.4 μm; the uncertainty can be as great as 0.2 μm. For metallic coatings, the thickness must be greater than 0.25 μm; the uncertainty can be as great as 0.1 μm.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The purpose of this test method is to define a procedure for testing components being considered for installation into a high-purity gas distribution system. Application of this test method is expected to yield comparable data among components tested for purposes of qualification for this installation.1.1 This test method covers the testing of interior surfaces of components such as tubing, fittings, and valves for surface morphology.1.2 This test method applies to all surfaces of tubing, connectors, regulators, valves, and any metal component, regardless of size.1.3 Limitations: 1.3.1 This methodology assumes a SEM operator skill level typically achieved over a 12-month period.1.3.2 This test method shall be limited to the assessment of pits, stringer, tears, grooves, scratches, inclusions, stepped grain boundaries, and other surface anomalies. However, stains and particles that may be produced during specimen preparation should be excluded in the assessment of anomalies.1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.Specific hazard statements are given in Section 6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
26 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页