微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
ASTM E1472-07 Standard Guide for Documenting Computer Software for Fire Models (Withdrawn 2011) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
ASTM E1472-07 Standard Guide for Documenting Computer Software for Fire Models (Withdrawn 2011) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

This guide provides recommendations for writers of user’manuals and other documents for computer software prepared for scientific and engineering computations in fire models and other areas of fire protection engineering. The guide provides information that can be included in terms of three types of documents.This guide is intended to assist in the understanding, usage, transfer, conversion, and modification of computer software. If the options and instructions contained in this guide are considered when documentation is prepared, the software should be used more readily for its intended purposes.The use of fire models currently extends beyond the fire research laboratory and into the engineering, fire service, and legal communities. Sufficient documentation of computer software for fire models is necessary to ensure that users can judge the adequacy of the scientific and technical basis for the models, select the appropriate computer operating environment, and use the software effectively within the specified limitations. Adequate documentation will help prevent the unintentional misuse of fire models.Additional guidelines on documentation can be found in ANSI/ANS 10.3 and ANSI/IEEE 1063.ANSI/ANS 10.2 and 10.5 provide guidelines for programming to ease the portability of the software and meet user needs.1.1 This guide provides information that should be in documentation for computer software prepared for scientific and engineering computations in fire models and other areas of fire protection engineering.1.2 The guidelines are presented in terms of three types of documentation: (1) technical document; (2) user's manual; and (3) installation, maintenance, and programming manual.1.3 There are no numerical values stated in this standard. It is recommended that SI units be the standard in the documentation and development of fire models.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This fire standard cannot be used to provide quantitative measures.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM E1591-20 Standard Guide for Obtaining Data for Fire Growth Models Active 发布日期 :  1970-01-01 实施日期 : 

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Using the tools described in this guide, an individual seeking to apply an IAQ model should be able to (1) assess the performance of the model for a specific situation or (2) recognize or assess its advantages and limitations.4.2 This guide can also be used for identifying specific areas of model deficiency that require further development or refinement.1.1 This guide provides quantitative and qualitative tools for evaluation of indoor air quality (IAQ) models. These tools include methods for assessing overall model performance as well as identifying specific areas of deficiency. Guidance is also provided in choosing data sets for model evaluation and in applying and interpreting the evaluation tools. The focus of the guide is on end results (that is, the accuracy of indoor concentrations predicted by a model), rather than operational details such as the ease of model implementation or the time required for model calculations to be performed.1.2 Although IAQ models have been used for some time, there is little guidance in the technical literature on the evaluation of such models. Evaluation principles and tools in this guide are drawn from past efforts related to outdoor air quality or meteorological models, which have objectives similar to those for IAQ models and a history of evaluation literature (1).2 Some limited experience exists in the use of these tools for evaluation of IAQ models.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The information gained through the site investigation is used to characterize the physical, biological, and chemical systems existing at a site. The processes that determine contaminant releases, contaminant migration, and environmental receptor exposure to contaminants are described and integrated in a conceptual site model.5.2 Development of this model is critical for determining potential exposure routes (for example, ingestion and inhalation) and for suggesting possible effects of the contaminants on human health and the environment. Uncertainties associated with the conceptual site model need to be identified clearly so that efforts can be taken to reduce these uncertainties to acceptable levels. Early versions of the model, which are usually based on limited or incomplete information, will identify and emphasize the uncertainties that should be addressed.5.3 The conceptual site model is used to integrate all site information and to determine whether information including data are missing (data gaps) and whether additional information needs to be collected at the site. The model is used furthermore to facilitate the selection of remedial alternatives and to evaluate the effectiveness of remedial actions in reducing the exposure of environmental receptors to contaminants.5.4 This guide is not meant to replace regulatory requirements for conducting environmental site characterizations at contaminated (including radiologically contaminated) sites. It should supplement existing guidance and promote a uniform approach to developing conceptual site models.5.5 This guide is meant to be used by all those involved in developing conceptual site models. This should ideally include representatives from all phases of the investigative and remedial process, for example, preliminary assessment, remedial investigation, baseline human health and ecological risk assessments, and feasibility study. The conceptual site model should be used to enable experts from all disciplines to communicate effectively with one another, resolve issues concerning the site, and facilitate the decision-making process.5.6 The steps in the procedure for developing conceptual site models include elements sometimes referred to collectively as site characterization. Although not within the scope of this guide, the conceptual site model can be used during site remediation.1.1 This guide is intended to assist in the development of conceptual site models to be used for the following: (1) integration of technical information from various sources, (2) support the selection of sample locations for establishing background concentrations of substances, (3) identify data needs and guide data collection activities, and (4) evaluate the risk to human health and the environment posed by a contaminated site. This guide generally describes the major components of conceptual site models, provides an outline for developing models, and presents an example of the parts of a model. This guide does not provide a detailed description of a site-specific conceptual site model because conditions at contaminated sites can vary greatly from one site to another.1.2 The values stated in either inch-pound or SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This guide is intended to apply to any contaminated site.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This guide will help users answer simple and fundamental questions about the LNAPL occurrence and behavior in the subsurface. It will help users to identify specific risk-based drivers and non-risk factors for action at a site and prioritize resources consistent with these drivers and factors.5.2 The site management decision process described in this guide includes several features that are only examples of standardized approaches to addressing the objectives of the particular activity. For example, Table 1 provides example indicators of the presence of LNAPL. Table 1 should be customized by the user with a modified list of LNAPL indicators as technically appropriate for the site or group of sites being addressed.5.3 This guide advocates use of simple analyses and available data for the LCSM in Tier 1 to make use of existing data and to interpret existing data potentially in new ways. The Tier 1 LCSM is designed to identify where additional data may be needed and where decisions can be made using existing data and bounding estimates.5.4 This guide expands the LCSM in Tier 2 and Tier 3 to a detailed, dynamic description that considers three-dimensional plume geometry, chemistry, and fluxes associated with the LNAPL that are both chemical- and location-specific.5.5 This guide fosters effective use of existing site data, while recognizing that information may be only indirectly related to the LNAPL body conditions. This guide also provides a framework for collecting additional data and defining the value of improving the LCSM for remedial decisions.5.6 By defining the key components of the LCSM, this guide helps identify the framework for understanding LNAPL occurrence and behavior at a site. This guide recommends that specific LNAPL site objectives be identified by the user and stakeholders and remediation metrics be based on the LNAPL site objectives. The LNAPL site objectives should be based on a variety of issues, including:5.6.1 Potential human health risks and risks to relevant ecological receptors and habitats;5.6.2 Specific regulatory requirements; and5.6.3 Aesthetic or other management objectives.5.7 This guide provides a framework by which users specify benefit remediation metrics that are consistent and achievable given the conditions of the LCSM.5.8 Guidance is focused on the information needed to make sound decisions rather than specific methods or evaluations that might be used in deriving that information. This guide is weighted toward field data rather than modeling, though modeling is clearly recognized as a useful tool in generating scenarios and bracketing conditions of the LNAPL body conditions. Limited examples of site specific data used to develop the LCSM are provided in Appendix X6.5.9 By defining specific, measurable attributes of remedial actions acting upon an LCSM, users can determine which actions may be feasible and which likely are not, using an evaluation of a consistent set of factors and expectations.5.10 A sound LCSM will lead to better decisions about remedial actions. The site management decision process premised on the LCSM is intended to result in more efficient and consistent decision-making about LNAPL risk evaluations and remedial actions.5.11 The complexity of multiphase LNAPL issues and the wide variety of analysis and interpretation methods that are available has lead to uncertainty in decision-making regarding sites with LNAPL and has sometimes resulted in misleading expectations about remedial outcomes.5.12 Current risk assessment methods often assume the LNAPL is an infinite source of chemicals of concern. The remediation decision-making may be better defined by considering the LNAPL as the source material for chemicals of concern by explicitly characterizing the chemical composition and physical characteristics of the LNAPL body.5.13 When LNAPL presents the main source of risk, the LNAPL should be the primary target of remedial actions and those remedial actions should be determined by following the decision evaluations described in this guide.5.14 LNAPL regulatory policies that define remediation metrics by small LNAPL thicknesses in wells are, on a site-specific basis, often inconsistent with risk-based screening levels (RBSLs) and with current technical knowledge regarding LNAPL mobility and recoverability. LNAPL remediation metrics should be connected to the current or potential future exposures and risks, as well as to other non-risk drivers present for a particular site.5.15 The user of this guide is encouraged to identify the appropriate process for public involvement and stakeholder participation in the development of the LCSM and the site management decision process.5.16 By providing a flexible framework, this guidance will continue to be applicable in principle while the many unknowns and uncertainties in LNAPL movement and the associated risks in all plume phases (for example, sorbed, dissolved, vapor) are studied through future research efforts. Like the LCSM itself, this is a “living” document that must embrace advances in knowledge and in technology.1.1 This guide applies to sites with LNAPL present as residual, free, or mobile phases, and anywhere that LNAPL is a source for impacts in soil, ground water, and soil vapor. Use of this guide may show LNAPL to be present where it was previously unrecognized. Information about LNAPL phases and methods for evaluating its potential presence are included in 4.3, guide terminology is in Section 3, and technical glossaries are in Appendix X7 and Appendix X8. Fig. 1 is a flowchart that summarizes the procedures of this guide.1.2 This guide is intended to supplement the conceptual site model developed in the RBCA process (Guides E1739 and E2081) and in the conceptual site model standard (Guide E1689) by considering LNAPL conditions in sufficient detail to evaluate risks and remedial action options.1.3 Federal, state, and local regulatory policies and statutes should be followed and form the basis of determining the remedial objectives, whether risk-based or otherwise. Fig. 1 illustrates the interaction between this guide and other related guidance and references.1.4 Petroleum and other chemical LNAPLs are the primary focus of this guide. Certain technical aspects apply to dense NAPL (DNAPL), but this guide does not address the additional complexities of DNAPLs.1.5 The composite chemical and physical properties of an LNAPL are a function of the individual chemicals that make-up an LNAPL. The properties of the LNAPL and the subsurface conditions in which it may be present vary widely from site to site. The complexity and level of detail needed in the LCSM varies depending on the exposure pathways and risks and the scope and extent of the remedial actions that are needed. The LCSM follows a tiered development of sufficient detail for risk assessment and remedial action decisions to be made. Additional data collection or technical analysis is typically needed when fundamental questions about the LNAPL cannot be answered with existing information.1.6 This guide does not develop new risk assessment protocols. It is intended to be used in conjunction with existing risk-based corrective action guidance (for example, Guides E1739 and E2081) and regulatory agency requirements (for example, USEPA 1989, 1991, 1992, 1996, 1997).1.7 This guide assists the user in developing an LCSM upon which a decision framework is applied to assist the user in selecting remedial action options.1.8 The goal of this guide is to provide sound technical underpinning to LNAPL corrective action using appropriately scaled, site-specific knowledge of the physical and chemical processes controlling LNAPL and the associated plumes in ground water and soil vapor.1.9 This guide provides flexibility and assists the user in developing general LNAPL site objectives based on the LCSM. This guide recognizes LNAPL site objectives are determined by regulatory, business, regional, social, and other site-specific factors. Within the context of the Guide E2081 RBCA process, these factors are called the technical policy decisions.1.10 Remediation metrics are defined based on the site objectives and are measurable attributes of a remedial action. Remediation metrics may include environmental benefits, such as flux control, risk reduction, or chemical longevity reduction. Remediation metrics may also include costs, such as installation costs, energy use, business impairments, waste generation, water disposal, and others. Remediation metrics are used in the decision analysis for remedial options and in tracking the performance of implemented remedial action alternatives.1.11 This guide does not provide procedures for selecting one type of remedial technology over another. Rather, it recommends that technology selection decisions be based on the LCSM, sound professional judgment, and the LNAPL site objectives. These facets are complex and interdisciplinary. Appropriate user knowledge, skills, and judgment are required.1.12 This guide is not a detailed procedure for engineering analysis and design of remedial action systems. It is intended to be used by qualified professionals to develop a remediation strategy that is based on the scientific and technical information contained in the LCSM. The remediation strategy should be consistent with the site objectives. Supporting engineering analysis and design should be conducted in accordance with relevant professional engineering standards, codes, and requirements.1.13 ASTM standards are not federal or state regulations; they are voluntary consensus standards.1.14 The following principles should be followed when using this guide:1.14.1 Data and information collected should be relevant to and of sufficient quantity and quality to develop a technically-sound LCSM.1.14.2 Remedial actions taken should be protective of human health and the environment now and in the future.1.14.3 Remedial actions should have a reasonable probability of meeting the LNAPL site objectives.1.14.4 Remedial actions implemented should not result in greater site risk than existed before taking actions.1.14.5 Applicable federal, state, and local regulations should be followed (for example, waste management requirements, ground water designations, worker protection).1.15 This guide is organized as follows:1.15.1 Section 2 lists associated and pertinent ASTM documents.1.15.2 Section 3 defines terminology used in this guide.1.15.3 Section 4 includes a summary of this guide.1.15.4 Section 5 provides the significance and use of this guide.1.15.5 Section 6 presents the components of the LCSM.1.15.6 Section 7 offers step-by-step procedures.1.15.7 Nonmandatory appendices are supplied for the following additional information:1.15.7.1 Appendix X1 provides additional LNAPL reading.1.15.7.2 Appendix X2 provides an overview of multiphase modeling.1.15.7.3 Appendix X3 provides example screening level calculations pertaining to the LCSM.1.15.7.4 Appendix X4 provides information about data collection techniques.1.15.7.5 Appendix X5 provides example remediation metrics.1.15.7.6 Appendix X6 provides two simplified examples of the use of the LNAPL guide.1.15.7.7 Appendix X7 and Appendix X8 are glossaries of technical terminology relevant for LNAPL decision-making.1.15.8 A reference list is included at the end of the document.1.16 The appendices are provided for additional information and are not included as mandatory sections of this guide.1.17 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.18 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.19 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers LNG density calculation models for use in the calculation or prediction of the densities of saturated liquefied natural gas (LNG) mixtures at a specified temperature range given the pressure, temperature, and composition of the mixture. Composition restrictions for the LNGs are given for methane, nitrogen, n-butane, i-butane, and pentanes. It is assumed that hydrocarbons with carbon numbers of six or greater are not present in the LNG solution. The mathematical models presented here are the extended corresponding states model, hard sphere model, revised Klosek and McKinley model, and the cell model.1.1 This specification covers Liquefied Natural Gas (LNG) density calculation models for use in the calculation or prediction of the densities of saturated LNG mixtures from 90K to 120K to within 0.1 % of true values given the pressure, temperature, and composition of the mixture.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 5.1 This guide is intended to assist and provide recommendations for an end-user of NDE imaging systems by providing an introduction to the basic principles of DICONDE for the control and maintenance of electronic NDE data. This guide is not intended to control the acceptability of the materials or components examined.5.2 Recommended End-users: 5.2.1 Personnel responsible for the creation, display, transfer, or storage of digital nondestructive evaluation results will use this guide.5.2.2 Personnel responsible for the purchase and implementation of NDT systems conforming to the DICONDE standard will use this guide.1.1 The display, transfer, and storage of digital nondestructive evaluation data in a common, open format is necessary for the effective interpretation and preservation of evaluation results. ASTM International has developed common open standards for Digital Imaging and Communication in Nondestructive Evaluation (DICONDE) based on the ubiquitous healthcare industry standard Digital Imaging and Communication in Medicine (DICOM). This guide provides an overview of DICONDE data archiving considerations and building information models for the efficient storing and locating of such data.1.2 This guide provides an overview of how to manage ASTM DICONDE data from standard practices found in 2.2 for the display, transfer, and storage of digital nondestructive test data.1.3 This guide provides an overview of how to utilize the DICOM standard found in 2.4 for the display, transfer, and storage of digital nondestructive test data for test methods not explicitly addressed by a DICONDE standard practice but having an equivalent medical imaging modality.1.4 This guide provides recommendations for the storage of nondestructive digital test data not addressed in 1.2 or 1.3.1.5 Units—Although this guide contains no values that require units, it does describe methods to store and communicate data that do require units to be properly interpreted. The SI units required by this guide are to be regarded as standard. No other units of measurement are included in this guide.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
26 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页