微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This test method helps to assess the axial locking force of a modular taper. Some types of devices that may utilize this type of connection are the modular shoulder and modular hip prostheses. Additional means of evaluating the locking mechanisms of tapers may be appropriate, depending upon the design of the device.4.2 This test method may not be appropriate for all implant applications. The user is cautioned to consider the appropriateness of the practice in view of the materials and design being tested and their potential application.4.3 While this test method may be used to measure the force required to disengage tapers, any comparison of such data for various component designs must take into consideration the size of the implant and the type of locking mechanism evaluated.1.1 This test method establishes a standard methodology for determining the force required, under laboratory conditions, to disassemble tapers of implants that are otherwise not intended to release. Some examples are the femoral components of a total or partial hip replacement or shoulder in which the head and base component are secured together by a self-locking taper.1.2 This test method has been developed primarily for evaluation of metal and ceramic head designs on metal tapers but may have application to other materials and designs.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F703-18(2022) Standard Specification for Implantable Breast Prostheses Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers the requirements for silicone gel-filled and saline-inflatable silicone gel-filled implantable breast prostheses intended for use in surgical reconstruction, augmentation, or replacement of the breast. Breast prosthesis are classified into three types: type I breast prosthesis, n - implantable breast prosthesis containing a single lumen containing a fixed amount of silicone gel, Type II breast prosthesis, n - implantable breast prosthesis comprised of two complete lumens, one inside the other, and type III breast prosthesis, n - implantable breast prosthesis comprised of two complete lumens, one inside the other. Elongation, breaking strength, tensile set, critical fused or adhered joints, shell rupture, and shell leakage shall be tested to meet the requirements prescribed. Gel cohesion, gel bleeding, and gel penetration shall be tested to meet the requirements prescribed.1.1 This specification covers the requirements for silicone gel-filled and saline-inflatable silicone gel-filled implantable breast prostheses intended for use in surgical reconstruction, augmentation, or replacement of the breast.1.2 Limitations—This specification does not cover custom fabricated implantable breast prostheses.1.3 Single-use saline-inflatable, smooth and textured silicone shell implantable breast prostheses are addressed in Specification F2051.1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F703-18(2022) Standard Specification for Implantable Breast Prostheses Active 发布日期 :  1970-01-01 实施日期 : 

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Once implanted, active fixation systems are subjected to cyclic loading that can be caused by blood flow, musculoskeletal motion, and other sources. The focus of this document is on axial loading caused by hemodynamics. However, depending on the device design other loading modes could influence AFC or attachment mechanism durability (e.g., radial dilatation could lead to longitudinal foreshortening and axial loading on an active fixation system). Damage to AFCs and/or attachment mechanisms may not necessarily lead to device malfunction, but could cause embolization of portions of the device, device migration, endoleaks, or other patient complications (1-4).4 Therefore, durability testing of AFCs and attachment mechanisms is important to ensure that these components are capable of maintaining structural integrity for a defined lifetime.5.1.1 A test method developed following this standard guide can be used to determine the durability of AFCs and/or attachment mechanisms under the desired loading which can be used to assess conformance to product specifications, consensus standards, and guidance documents as well as to support regulatory submissions, quality control, and manufacturing.5.2 This guide provides examples and recommendations so that users can develop an appropriate active fixation durability test for their device design that mechanically challenges either the AFC, the attachment mechanism, or both simultaneously. It should be recognized that both AFCs and attachment mechanisms need to be evaluated to fully characterize active fixation system durability for design verification testing. While testing of the entire active fixation system may typically be preferable, this guide recognizes that there might be situations where this is not practical or desired and allows for independent testing of AFCs and attachment mechanisms. This guide does not contain an exhaustive list of test methods for active fixation durability and methods not included herein may be acceptable for evaluating active fixation durability. Furthermore, this guide does not include information on how to handle all patient complexities such as calcium deposits or weakened aortic tissue. For assistance regarding super-physiological testing, the user is referred to ASTM F3211.5.2.1 The success of an active fixation durability test method depends on the ability of the test apparatus to consistently induce the desired loading (force and/or displacement) to the test specimen at the applied test frequency for the entire duration of the test.5.3 For most devices, active fixation durability testing will need to be complemented by other types of durability testing such as pulsatile, axial, bending, or torsional. ASTM F2477 addresses pulsatile durability testing, ASTM F2942 addresses axial, bending, and torsional durability testing, and ISO 25539-1, in part, addresses general in vitro testing and durability testing of endovascular prostheses.1.1 This guide addresses how to conduct in vitro durability testing on active fixation components (AFCs) and attachment mechanisms of endovascular prostheses. It does not address the durability of fixation systems that reside solely within the vessel lumen to resist device migration (e.g, radial force and friction, adhesives, or geometric fit).1.2 This guide was developed to address active fixation durability for aortic stent grafts. It is not intended to address fixation durability for other endovascular prostheses such as inferior vena cava filters, transcatheter heart valves, barbed venous stents, ancillary fixation devices (e.g, staples or adhesives), or cardiac devices (e.g., left atrial appendage device or mitral repair device). However, some of the techniques and guidance within may be applicable to the in vitro testing of those other devices.1.3 This guide does not directly apply to implants with absorbable AFCs although many aspects of this standard are applicable to those products.1.4 This guide does not provide the in vivo physiologic loading conditions for endovascular prostheses. It is the responsibility of the user to determine the loading or deformation conditions for their particular device and indication. Typically, an axial loading (force or displacement) mode caused by hemodynamics is used, although other modes are possible and should be considered.1.5 This guide does not recommend any specific test method or apparatus for evaluating active fixation durability. It is recognized that there are multiple valid ways to conduct active fixation durability testing and as such this guide provides general recommendations and topics to consider so that users can successfully develop a test plan for their device.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F1378-18e1 Standard Specification for Shoulder Prostheses Active 发布日期 :  1970-01-01 实施日期 : 

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This guide specifies a method to measure the surface and estimate the in-vivo material loss from the conical taper junctions, such as the femoral head/stem junction or adapter sleeve from explanted modular hip prosthesis, modular knee or shoulder joints. This guide is applicable to any articulating bearing material, stem material and conical taper size. The principles in this guide may be applied to other designs of taper junction, such as the modular stem/neck junction found in some hip joints.1.2 This guide covers the measurement of the surface and estimation of depth of material loss and volume of material loss and taper geometry using a Roundness Machine (1-4), Coordinate Measuring Machine (CMM) (5) and Optical Coordinate Measuring Machine (6, 7).2 Other measurement equipment may be used to measure the surface if the resolution and accuracy of the measurements are comparable with the instruments detailed in this standard. The measurement and analysis protocols should be based on those described in this standard.NOTE 1: The maximum depth of material loss is sensitive to the number and spacing of data points.1.3 The measurement techniques in this standard guide use measurements taken on the surface of the taper using stylus instruments. The material loss/corrosion mechanisms in the taper junction may lead to oxide layers or corrosion products deposited on the surface of the taper. These layers may lead to an underestimation of the volume of material loss.1.4 The explants may have debris or biological deposits on the surfaces of the taper junctions. These deposits will prevent the measurement of the actual surface of the taper junction and their effect on the measurement must be considered when deciding the cleaning protocol. Normally, the taper surfaces will be cleaned before measurements are taken.1.5 This standard may involve hazardous materials, operations and equipment. As a precautionary measure, explanted devices should be sterilized or minimally disinfected by an appropriate means that does not adversely affect the implant or the associated tissue that may be the subject of subsequent analysis. A detailed discussion of precautions to be used in handling human tissues can be found in ISO 12891-1. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM F2887-23 Standard Specification for Total Elbow Prostheses Active 发布日期 :  1970-01-01 实施日期 : 

1.1 This specification covers total elbow replacement (TER) prostheses and hemi-elbow replacement (“hemi”) prostheses used to provide functioning articulation by employing humeral, ulnar, and/or radial components that allow for the restoration of motion of the human elbow joint complex.1.2 Included within the scope of this specification are elbow prosthesis components for primary and revision surgery with linked and non-linked designs and components implanted with or without use of bone cement.1.3 This specification is intended to provide basic descriptions of material and prosthesis geometry. In addition, those characteristics determined to be important to the in vivo performance of the prosthesis are defined. However, compliance with this specification does not itself mean that a device will provide satisfactory clinical performance.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F2887-23 Standard Specification for Total Elbow Prostheses Active 发布日期 :  1970-01-01 实施日期 : 

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F1378-18e1 Standard Specification for Shoulder Prostheses Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers shoulder prostheses for total or hemiarthroplasty used to provide functioning articulation by employing glenoid and humeral components. The prostheses may be constrained, partially constrained, or unconstrained. Modular prostheses are included in this specification, but devices for custom applications are not covered. The prostheses are required to meet the prescribed mechanical strength, corrosion resistance, biocompatibility, wear of alternative, and range of motion.1.1 This specification covers shoulder prostheses for total or hemiarthroplasty used to provide functioning articulation by employing glenoid and humeral components.1.2 Devices for custom applications are not covered by this specification. Modular prostheses are included in this specification.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.FIG. 1 Glenosphere Thickness1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
32 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页