微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The determination of WPPO composition is useful in optimization of process variables, diagnosing unit performance, and in evaluating the effect of changes in waste plastic composition on WPPO performance properties.5.1.1 Aromatics and olefin hydrocarbon type analysis, including sub-classes, may be useful for evaluating suitability of WPPO as a feedstock for further processing.1.1 This test method covers a standard procedure for the determination of hydrocarbon types (saturates, olefins, styrenes, aromatics and polyaromatics) of waste plastic process oil (WPPO) from chemical or thermal processes using gas chromatography and vacuum ultraviolet absorption spectroscopy detection (GC-VUV).1.1.1 This test method is applicable for plastic recycling and circular schemes including wide range density material from polyethylene and polypropylene.1.1.2 The test method is applicable to waste plastic process oil having a final boiling point of 545 °C or lower at atmospheric pressure as measured by this test or Test Method D2887. This test method is limited to samples having a boiling range greater than 36 °C, and having a vapor pressure sufficiently low to permit sampling at ambient temperature.1.1.3 WPPOs with initial boiling points less than nC5 (36 °C) and final boiling point less than nC15 (271 °C) may be analyzed by Test Method D8369.1.1.4 Appendix X3 is applicable to waste plastic process oils that are predominantly hydrocarbons in the boiling range of pentane, nC5 (36 °C) to tetrahexacontane, nC64 (629 °C).1.2 Concentrations of group type totals are determined by percent mass or percent volume. The applicable working ranges are as follows:Total Aromatics %Mass 1 to 50Monoaromatics %Mass 1 to 50Diaromatics %Mass 1 to 15Tri-plus aromatics %Mass 0.5 to 5PAH %Mass 0.5 to 15Saturates %Mass 5 to 99Olefins %Mass 1 to 80Conjugated diolefins %Mass 0.2 to 5Styrenes %Mass 0.2 to 5The final precision concentration ranges will be defined by a future ILS.1.2.1 Saturates totals are the result of the summation of normal paraffins, isoparaffins, and naphthenes.1.2.2 Aromatics are the summation of monoaromatic and polyaromatic group types. Polyaromatic totals are the result of the summation of diaromatic and tri-plus aromatic group types.1.2.3 Olefin totals are the result of the sum of mono-olefins, conjugated diolefins, non-conjugated diolefins, and cyclic olefins.1.2.4 Styrenes totals are the sum of styrene and alkylated styrenes. Styrenes are classified separately, neither as aromatic nor olefin.1.3 Waste plastic process oil containing mixed plastic types such as polyethylene terephthalate PET and polyvinyl chloride or other material may yield compounds including hetero-compounds that are not speciated by this test method.1.4 Individual components are typically not baseline separated by the procedure described in this test method. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.5 This test method may apply to other process oils from sources such as tires and bio-mass boiling between pentane (36 °C) and tetratetracontane (545 °C), but has not been extensively tested for such applications.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement, other than the boiling point of normal paraffins (°F) in Table 2 and Table X.3.1, are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Benzene is a compound that endangers health, and the concentration is limited by environmental protection agencies to produce a less toxic gasoline.5.2 This test method is fast, simple to run, and inexpensive.5.3 This test method is applicable for quality control in the production and distribution of spark-ignition engine fuels.1.1 This test method covers the determination of the percentage of benzene in spark-ignition engine fuels. It is applicable to concentrations from 0.1 % to 5 % by volume.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a means for obtaining useful in-service fluid analysis properties in the field. It is not to be confused with laboratory or portable FTIR devices which provide measurements per the existing Test Methods listed in 4.1.1.1. Each of these monitored properties has been shown over time to indicate either contamination in the fluid system or a particular breakdown modality of the fluid, which is critical information to assess the health of the fluid as well as the machinery. By utilizing the field device, it is possible for those operating machinery, in locations and situations where it is not practical to gather a sample for the laboratory, to obtain quality in-service fluid analysis. This may be due to the need to have an analysis done in real-time, on-the-spot to maximize the operational hours of equipment, or to have the analysis performed at a location where no laboratory analysis is available.1.1 This test method describes the use of a grating spectrometer to analyze properties of an in-service fluid sample which are indicative of the status of that fluid and related machinery.1.2 This test method provides a means for the assessment of in-service fluid properties using infrared spectroscopy. It describes a methodology for sampling, performing analysis, and providing key in-service fluid properties with a self-contained unit that is meant for field use. It provides analysis of in-service fluids at any stage of their useful life, including newly utilized fluid.1.3 In particular, these key in-service fluid properties include oxidation, nitration, sulfation, soot, and antiwear additives. They are applicable for hydrocarbon type (API Group I-IV) fluids from machinery lubricants, including reciprocating engine oils, turbine oils, hydraulic oils, and gear oils.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4.1 Exception—The unit for wavenumbers is in cm-1.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The composition and sequential structure of alginate determines the functionality of alginate in an application. For instance, the gelling properties of an alginate are highly dependent upon the monomer composition and sequential structure of the polymer. Gel strength will depend upon the guluronic acid content (FG) and also the average number of consecutive guluronate moieties in G-block structures (NG>1).4.2 Chemical composition and sequential structure of alginate can be determined by 1H- and 13C-nuclear magnetic resonance spectroscopy (NMR). A general description of NMR can be found in <761> of the USP 35-NF30. The NMR methodology and assignments are based on data published by Grasdalen et al. (1979, 1981, 1983).4, 5, 6 The NMR technique has made it possible to determine the monad frequencies FM (fraction of mannuronate units) and FG (fraction of guluronate units), the four nearest neighboring (diad) frequencies FGG, FMG, FGM, FMM, and the eight next nearest neighboring (triad) frequencies FGGG, FGGM, FMGG, FMGM, FMMM, FMMG, FGMM, FGMG. Knowledge of these frequencies enables number averages of block lengths to be calculated. NG is the number average length of G-blocks, and NG>1 is the number average length of G-blocks from which singlets (-MGM-) have been excluded. Similarly, NM is the number average length of M-blocks, and NM>1 is the number average length of M-blocks from which singlets (-GMG-) have been excluded. 13C NMR must be used to determine the M-centered triads and NM>1. This test method describes only the 1H NMR analysis of alginate. Alginate can be well characterized by determining FG and NG>1.4.3 In order to obtain well-resolved NMR spectra, it is necessary to reduce the viscosity and increase the mobility of the molecules by depolymerization of alginate to a degree of polymerization of about 20 to 50. Acid hydrolysis is used to depolymerize the alginate samples. Freeze-drying, followed by dissolution in 99 % D2O, and another freeze-drying before dissolution in 99.9 % D2O yields samples with low 1H2O content. TTHA is used as a chelator to prevent traces of divalent cations to interact with alginate. While TTHA is a more effective chelator, other agents such as EDTA and citrate may be used. Such interactions may lead to line broadening and selective loss of signal intensity.4.4 Samples are analyzed at a temperature of 80 ± 1°C. Elevated sample temperature contributes to reducing sample viscosity and repositions the proton signal of residual water to an area outside that of interest.1.1 This test method covers the determination of the composition and monomer sequence of alginate intended for use in biomedical and pharmaceutical applications as well as in Tissue Engineered Medical Products (TEMPs) by high-resolution proton NMR (1H NMR). A guide for the characterization of alginate has been published as Guide F2064.1.2 Alginate, a linear polymer composed of β-D-mannuronate (M) and its C-5 epimer α-L-guluronate (G) linked by β-(1—>4) glycosidic bonds, is characterized by calculating parameters such as mannuronate/guluronate (M/G) ratio, guluronic acid content (G-content), and average length of blocks of consecutive G monomers (that is, NG>1 ). Knowledge of these parameters is important for an understanding of the functionality of alginate in TEMP formulations and applications. This test method will assist end users in choosing the correct alginate for their particular application. Alginate may have utility as a scaffold or matrix material for TEMPs, in cell and tissue encapsulation applications, and in drug delivery formulations.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The degree of deacetylation of chitosan salts is an important characterization parameter since the charge density of the chitosan molecule is responsible for potential biological and functional effects.4.2 The degree of deacetylation (% DDA) of water-soluble chitosan salts can be determined by 1H nuclear magnetic resonance spectroscopy (1H NMR). Several workers have reported on the NMR determination of chemical composition and sequential arrangement of monomer units in chitin and chitosan. The test method described is primarily based on the work of Vårum et al. (1991),5 which represents the first publication on routine determination of chemical composition in chitosans by solution state 1H NMR spectroscopy. This test method is applicable for determining the % DDA of chitosan chloride and chitosan glutamate salts. It is a simple, rapid, and suitable method for routine use. Quantitative 1H NMR spectroscopy reports directly on the relative concentration of chemically distinct protons in the sample, consequently, no assumptions, calibration curves or calculations other than determination of relative signal intensity ratios are necessary.4.3 In order to obtain well-resolved NMR spectra, depolymerization of chitosans to a number average degree of polymerization (DPn) of ~15 to 30 is required. This reduces the viscosity and increases the mobility of the molecules. Although there are several options for depolymerization of chitosans, the most convenient procedure is that of nitrous acid degradation in deuterated water. The reaction is selective, stoichiometric with respect to GlcN, rapid, and easily controlled (Allan & Peyron, 1995).6 The reaction selectively cleaves after a GlcN-residue, transforming it into 2,5-anhydro-D-mannose (chitose), consequently, depletion of GlcN after depolymerization is expected. On the other hand, the chitose unit displays characteristic 1H NMR signals the intensity of which may be estimated and utilized in the calculation of % DDA, eliminating the need for correction factors. Using the intensity of the chitose signals, the number average degree of polymerization can easily be calculated as a control of the depolymerization.4.4 Samples are equilibrated and analyzed at a temperature of 90 ± 1°C. Elevated sample temperature contributes to reducing sample viscosity and repositions the proton signal of residual water to an area outside that of interest. While samples are not stored at 90°C but only analyzed at this elevated temperature, the NMR tubes should be sealed with a stopper to avoid any evaporation. At a sample pH* of 3.8-4.3 (see 6.1.5 below), artifactual deacetylation of the sample does not occur during the short equilibration and analysis time.4.5 A general description of NMR can be found in <761> of the USP 35-NF30.1.1 This test method covers the determination of the degree of deacetylation in chitosan and chitosan salts intended for use in biomedical and pharmaceutical applications as well as in Tissue Engineered Medical Products (TEMPs) by high-resolution proton NMR (1H NMR). A guide for the characterization of chitosan salts has been published as Guide F2103.1.2 The test method is applicable for determining the degree of deacetylation (% DDA) of chitosan chloride and chitosan glutamate salts and is valid for % DDA values from 50 up to and including 99. It is simple, rapid, and suitable for routine use. Knowledge of the degree of deacetylation is important for an understanding of the functionality of chitosan salts in TEMP formulations and applications. This test method will assist end users in choosing the correct chitosan for their particular application. Chitosan salts may have utility in drug delivery applications, as scaffold or matrix material, and in cell and tissue encapsulation applications.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide presents the use of spectral searching by curve matching search algorithms for data recorded using mid-infrared spectroscopy. The methods described herein may be applicable to the use of these algorithms for other types of spectroscopic data, but each type of data search should be assessed separately. The purpose of this evaluation is the classification and, where possible, identification of the unknown. Spectral searching is intended as a screening method to assist the analyst, and is not an absolute identification technique, and hence, not intended to replace an expert in infrared spectroscopy and should not be used without suitable training. The Euclidean distance algorithm and the first derivative Euclidean distance algorithm are described and their use discussed. The theory and common assumptions made when using search algorithms are also discussed, along with guidelines for the use and interpretation of the search results.1.1 Spectral searching is the process whereby a spectrum of an unknown material is evaluated against a library (database) of digitally recorded reference spectra. The purpose of this evaluation is classification of the unknown and, where possible, identification of the unknown. Spectral searching is intended as a screening method to assist the analyst and is not an absolute identification technique. Spectral searching is not intended to replace an expert in infrared spectroscopy. Spectral searching should not be used without suitable training.1.2 The user of this guide should be aware that the results of a spectral search can be affected by the following factors described in Section 5: (1) baselines, (2) sample purity, (3) Absorbance linearity (Beer’s Law), (4) sample thickness, (5) sample technique and preparation, (6) physical state of the sample, (7) wavenumber range, (8) spectral resolution, and (9) choice of algorithm.1.2.1 Many other factors can affect spectral searching results.1.3 The scope of this guide is to provide a guide for the use of search algorithms for mid-infrared spectroscopy. The methods described herein may be applicable to the use of these algorithms for other types of spectroscopic data, but each type of data search should be assessed separately.1.4 The Euclidean distance algorithm and the first derivative Euclidean distance algorithm are described and their use discussed. The theory and common assumptions made when using search algorithms are also discussed, along with guidelines for the use and interpretation of the search results.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Knowledge of the presence of trace metals in gas turbine fuels enables the user to predict performance and, when necessary, to take appropriate action to prevent corrosion.1.1 This test method covers the determination of sodium, lead, calcium, and vanadium in Specification D2880 Grade Nos. 0-GT through 4-GT fuels at 0.5 mg/kg level for each of the elements. This test method is intended for the determination of oil-soluble metals and not waterborne contaminants in oil-water mixtures.1.1.1 Test Method D6728 is suggested as an alternative test method for the determination of these elements in Specification D2880.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Moisture measurement in natural gas is performed to ensure sufficiently low levels for gas purchase contracts and to prevent corrosion. Moisture may also contribute to the formation of hydrates.5.2 The significance of applying TDLAS for the measurement of moisture in natural gas is TDLAS analyzers may have a very high degree of selectivity and minimal interference in many natural gas streams. Additionally, the sensing components of the analyzer are not wetted by the natural gas, limiting the potential damage from corrosives such as hydrogen sulfide (H2S) and liquid contaminants such as ethylene glycol or compressor oils. As a result, the TDLAS analyzer is able to detect changes in concentration with relatively rapid response. It should be noted that the mirrors of a TDLAS analyzer may be fouled if large quantities of condensed liquids enter the sample cell. In most cases the mirror can be cleaned without the need for recalibration or realignment.5.3 Primary applications covered in this method are listed in 5.3.1 – 5.3.3. Each application may have differing requirements and methods for gas sampling. Additionally, different natural gas applications may have unique spectroscopic considerations.5.3.1 Raw natural gas is found in production, gathering sites, and inlets to gas-processing plants characterized by potentially high levels of water (H2O), carbon dioxide (CO2), hydrogen sulfide (H2S), and heavy hydrocarbons. Gas-conditioning plants and skids are normally used to remove H2O, CO2, H2S, and other contaminants. Typical moisture concentration after dehydration is roughly 20 to 200 ppmv. Protection from liquid carryover such as heavy hydrocarbons and glycols in the sample lines is necessary to prevent liquid pooling in the cell or the sample components.5.3.2 Underground gas storage facilities are high-pressure caverns used to store large volumes of gas for use during peak demand. Underground storage caverns can reach pressures as high as 275 bar. Multistage and heated regulator systems are usually required to overcome significant temperature drops resulting from gas expansion in the sample.5.3.3 High-quality “sales gas” is found in transportation pipelines, natural gas distribution (utilities), and natural gas power plant inlets. The gas is characterized by a very high percentage of methane (90 to 100 %) with small quantities of other hydrocarbons and trace levels of contaminates.1.1 This test method covers online determination of vapor phase moisture concentration in natural gas using a tunable diode laser absorption spectroscopy (TDLAS) analyzer also known as a “TDL analyzer.” The particular wavelength for moisture measurement varies by manufacturer; typically between 1000 and 10 000 nm with an individual laser having a tunable range of less than 10 nm.1.2 Process stream pressures can range from 700-mbar to 700-bar gage. TDLAS is performed at pressures near atmospheric (700- to 2000-mbar gage); therefore, pressure reduction is typically required. TDLAS can be performed in vacuum conditions with good results; however, the sample conditioning requirements are different because of higher complexity and a tendency for moisture ingress and are not covered by this test method. Generally speaking, the vent line of a TDL analyzer is tolerant to small pressure changes on the order of 50 to 200 mbar, but it is important to observe the manufacturer’s published inlet pressure and vent pressure constraints. Large spikes or steps in backpressure may affect the analyzer readings.1.3 The typical sample temperature range is -20 to 65 °C in the analyzer cell. While sample system design is not covered by this standard, it is common practice to heat the sample transport line to around 50 °C to avoid concentration changes associated with adsorption and desorption of moisture along the walls of the sample transport line.1.4 The moisture concentration range is 1 to 10 000 parts per million by volume (ppmv). It is unlikely that one spectrometer cell will be used to measure this entire range. For example, a TDL spectrometer may have a maximum measurement of 1 ppmv, 100 ppmv, 1000 ppmv, or 10 000 ppmv with varying degrees of accuracy and different lower detection limits.1.5 TDL absorption spectroscopy measures molar ratios such as ppmv or mole percentage. Volumetric ratios (ppmv and %) are not pressure dependent. Weight-per-volume units such as milligrams of water per standard cubic metre or pounds of water per standard cubic foot can be derived from ppmv at a specific condition such as standard temperature and pressure (STP). Standard conditions may be defined differently for different regions and entities. The dew point can be estimated from ppmv and pressure. Refer to Test Method D1142 and ISO 18453.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 8 on Hazards.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 In many cases, equipment failure modes are identified by wear debris that is not captured in used lubricating oil samples but captured on chip detectors, filters or by other means. Users of this technique include, but are not limited to, original equipment manufacturers (OEMs), commercial airlines, civil aerospace operators, maintenance repair and overhaul (MRO) facilities, and military maintenance personnel.1.1 This test method describes a means for quantitative determination of wear debris found in in-service lubricants by laser-induced breakdown spectroscopy (LIBS). LIBS is an analytical technology that uses short laser pulses to create micro hot-plasma ablation of a material and then employs spectroscopic tools for analysis.21.2 This method covers the means for alloy classification and sizing of wear debris. Wear debris sources can include, but are not limited to: (1) chip collector and chip detector devices, (2) filters, (3) ferrograms, and (4) loose particles. The 23 tested alloys and metals included in the default material library of the instrument are listed in Table 1.1.3 The method for alloy classification and sizing of wear debris is not limited to the list of alloys in Table 1. The instrument has the capability of including additional alloys and metals as required.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

AbstractThese practices cover a data system comprising procedures for the identification of individual chemical substances using infrared absorption spectroscopy and band indexes of spectral data. Although this data system is in use world wide as the largest publicly available data base, it does not represent the optimum way to generate a new data base with the most modern computerized equipment. In addition, the use of these practices requires encoded data and appropriate data handling equipment. The index data, which are available on magnetic tape, include codes for spectral data of chemical substances, chemical-structure classification, empirical formula, melting or boiling point, and serial number reference. Codes on sample state, wavelength intervals of strongest bands, and no-data areas are included as well.1.1 These practices cover a data system generated from 1955 through 1974. It is in world-wide use as the largest publicly available data base. It is recognized that it does not represent the optimum way to generate a new data base with the most modern computerized equipment.1.2 These practices describe procedures for identification of individual chemical substances using infrared absorption spectroscopy and band indexes of spectral data. Use of absorption spectroscopy for qualitative analysis has been described by many (), but the rapid matching of the spectrogram of a sample with a spectral data in the literature by use of a band index system designed for machine sorting was contributed by Kuentzel (). It is on Kuentzel's system that the ASTM indexes of absorption spectral data are based.1.3 Use of these practices requires, in addition to a recording spectrometer and access to published reference spectra, the encoded data and suitable data handling equipment.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The presence and concentration of total petroleum hydrocarbons, as well as total oil and grease, in domestic and industrial wastewater is of concern to the public because of its deleterious aesthetic effect and its impact on aquatic life.5.2 Regulations and standards have been established that require monitoring of total petroleum hydrocarbons as well as total oil and grease in water and wastewater.1.1 This test method covers the determination of total oil and grease (TOG) that can be extracted from water or wastewater samples by cyclohexane and measured by non-dispersive IR spectroscopy from 1370–1380 cm-1. Treating the extract with Florisil2 to remove polar substances prior to the IR measurement enables determination of the total petroleum (TPH).1.2 This method also considers the volatile fraction of petroleum hydrocarbons which is lost by gravimetric methods that require solvent evaporation prior to weighing, as well as by solventless IR methods that require drying of the employed solid phase material prior to measurement. Similarly, a more complete fraction of extracted petroleum hydrocarbon is accessible by this method as compared to GC methods that use a time window for quantification, as petroleum hydrocarbons eluting outside these windows are also quantified.1.3 This method defines total oil and grease in water as material that can be extracted with cyclohexane and measured by IR absorption in the region of 1370–1380 cm-1 (7.25–7.3 µm). Similarly, total petroleum hydrocarbon in water is defined as material that can be extracted with cyclohexane, remains in the extract after filtration over Florisil and is measured by IR absorption in the region of 1370–1380 cm-1 (7.25–7.3 µm). The concentration of total grease is defined as the difference between the total oil and grease and total petroleum hydrocarbon concentrations.1.4 This method covers the range of 0.5 to 1000 mg/L for total oil and grease as well as for total petroleum hydrocarbons and has a method detection limit (MDL) of 0.5 mg/L. The range and method detection limit may be extended to higher or lower concentrations by adjusting the water or solvent volume used in the liquid-liquid extraction.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended for use with other standards that address the collection and preparation of samples (dusts by wipe, dried paint chips, and soils) that are obtained during the assessment or mitigation of lead hazards from buildings and related structures.5.2 Laboratories analyzing samples obtained during the assessment or mitigation of lead hazards from buildings and related structures shall conform to Practice E1583, or shall be recognized for lead analysis as promulgated by authorities having jurisdiction, or both.NOTE 1: In the United States of America, laboratories performing analysis of samples collected during lead-based paint activities are required to be accredited to ISO/IEC 17025 and to other requirements promulgated by the Environmental Protection Agency (EPA).5.3 This test method may also be used to analyze similar samples from other environments such as toxic characteristic extracts of waste sampled using Guide E1908 as prepared for analysis using EPA SW-846 Test Method 1311.1.1 This test method specifies a procedure for analysis of dried paint, soil, and dust wipe samples collected in and around buildings and related structures for lead content using inductively coupled plasma-optical emission spectroscopy (ICP-OES).1.2 This test method should be used by analysts experienced in the use of ICP-OES, the interpretation of spectral and matrix interferences, and procedures for their correction. For determination of lead (Pb) and other metals in air by ICP-OES, see Test Method D7035.1.3 This test method cites specific methods for preparing test solutions of dried paint, soil, and wipe samples for analysis.1.4 It is the user’s responsibility to ensure the validity of this test method for sampling materials of untested matrices.1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-OES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices or the precision between instruments of the same make and model.1.6 This test method contains notes that are explanatory and are not part of the mandatory requirements of this test method.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7.1 Exception—The inch-pound and SI units shown for wipe sampling data are to be individually regarded as standard for wipe sampling data.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method (Part A) utilizes FTIR spectroscopy to determine the percent Refrigerant-114 impurity in uranium hexafluoride. Refrigerant-114 is an example of an impurity gas in uranium hexafluoride.1.1 This test method covers determining the concentrations of refrigerant-114, some other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride when looked for specifically. The two options are outlined for this test method. They are designated as Part A and Part B.1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a “2S” container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A.1.2 The method discribed in part B is more efficient because there isn’t matrix effect. FTIR spectroscopy identifies bonds as C-H, C-F, C-Cl. To quantify HCH compounds, these compounds must be known and the standards available to do the calibration.After a screening, if the spectrum is the UF6 spectrum or if the other absorption peaks allow the HCH quantification, this test method can be used to check the compliance of UF6 as specified in Specifications C787 and C996. The limits of detection are in units of mole percent concentration.1.3 Part A pertains to Sections 7-10and Part B pertains to Sections 12-16.1.4 These test options are applicable to the determination of hydrocarbons, chlorocarbons, and partially or completely substituted halohydrocarbons contained as impurities in uranium hexafluoride (UF6). Gases such as carbon tetrafluoride (CF4), which absorb infrared radiation in a region where uranium hexafluoride also absorbs infrared radiation, cannot be analyzed in low concentration via these methods due to spectral overlap/interference.1.5 These test options are quantitative and applicable in the concentration ranges from 0.003 to 0.100 mole percent, depending on the analyte.1.6 These test methods can also be used for the determination of non-metallic fluorides such as silicon tetrafluoride (SiF4), phosphorus pentafluoride (PF5), boron trifluoride (BF3), and hydrofluoric acid (HF), plus metal-containing fluorides such as molybdenum hexafluoride (MoF6). The availability of high quality standards for these gases is necessary for quantitative analysis.1.7 These methods can be extended to other carbon-containing and inorganic gases as long as:1.7.1 There are not any spectral interferences from uranium hexafluoride’s infrared absorbances.1.7.2 There shall be a known calibration or known “K” (value[s]) for these other gases.1.8 The values stated in SI units are to be regarded as the standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Biodiesel is a blendstock commodity primarily used as a value-added blending component with diesel fuel.5.2 This test method is applicable for quality control in the production and distribution of diesel fuel and biodiesel blends containing FAME.1.1 This test method covers the determination of the content of fatty acid methyl esters (FAME) biodiesel in diesel fuel oils. It is applicable to concentrations from 1.00 % to 20 % by volume (see Note 1). This procedure is applicable only to FAME. Biodiesel in the form of fatty acid ethyl esters (FAEE) will cause a negative bias.NOTE 1: Using the proper ATR sample accessory, the range may be expanded from 1 % to 100 % by volume, however precision data is not available above 20 % by volume.1.2 The values stated in SI units of measurement are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The permissible level of heavy metals in certain coatings is specified by governmental regulatory agencies. This test method provides a fully documented procedure for determining low concentrations of mercury present in both water and solvent-reducible coatings to determine compliance.1.1 This test method covers the determination of the content of mercury in the range between 10 and 1000 ppm (mg/kg) present in liquid coatings, coatings vehicles, or in dried films obtained from previously coated substrates. There is no reason to believe that higher levels could not be determined by this test method, provided that appropriate dilutions and adjustments in specimen size and reagent quantities are made.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7 and 9.1.1.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
111 条记录,每页 15 条,当前第 1 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页