微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it.5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state.5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run.5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined. The four water treatment levels may be tested individually, all four simultaneously, or any combination of multiple water treatment levels.5.5 Reference oils, on which the data obtained by this test method is known, are available.5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.NOTE 1: When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil.1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it.5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state.5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run.5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined.5.5 Reference oils, on which the data obtained by this test method is known, are available.5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.NOTE 1: When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil.1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers new coal-tar creosote, and creosote in use, for the preservative treatment of piles, poles, and timber for marine, land, and fresh water use. Test Methods D38 covers the sampling of wood preservatives prior to testing.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

The degree and rate of aerobic biodegradability of a plastic material in the environment determines to what extent and in what time period that plastic may be eliminated from certain environments. With increasing use of plastics, disposal is becoming a major issue. This procedure estimates the degree and time required to biodegrade plastics in an activated-sludge-wastewater-treatment aeration basin. This test method determines the degree of aerobic biodegradation by measuring the consumption of oxygen due to respiration of the microbial population, as a function of time when the plastic is exposed to an inoculum of activated sewer sludge in the concentration range from 30 mg/L to 1000 mg/L MLVSS. This test method is designed to measure the oxidation of plastics containing carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur, chlorine, and sodium. Changes in the molecular weight and physical characteristics of the polymer after exposure to activated-sludge inoculum can be assessed by other ASTM test methods, such as Test Method D 5209.Activated sludge from a sewage treatment plant that treats principally municipal waste is considered to be an acceptable active aerobic inoculum available over a wide geographical area in which to test a broad range of plastic materials. When biodegradation in a specific activated-sludge-wastewater-treatment system is to be determined seed should be collected from that environment. Alternatively, soil or compost suspensions, or both can be used for inoculation, because with some plastic materials the activity of fungi is important for biodegradation.1.1 This test method is designed to index plastic materials which are more or less biodegradable relative to a standard in aerobic activated-sludge-treatment systems.1.2 This test method is designed to be applicable to all plastic materials that are not inhibitory to the bacteria present in the activated sludge. Compounds with toxic properties may delay or inhibit the degradation process.1.3 This test method measures the degree and rate of aerobic biodegradation of plastic materials (including formulation additives which may be biodegradable) on exposure to activated-sludge biomass in the concentration range from 0.1 to 2.5 g/L mixed-liquor volatile suspended solids (MLVSS) under laboratory conditions.1.4 The high MLVSS concentration relative to other biodegradation tests has the advantage of improved repeatability and increased likelihood of more rapid adaptation or acclimation of the biomass.1.5 This test method allows for the determination of biological nitrification and the oxidation of other non-carbon components of the plastic.1.6 This test method does not purport to determine whether or not a plastic material will pass through primary treatment to the aeration basin of an activated-sludge wastewater-treatment plant. The size or density of the plastic material may exclude it from the secondary-treatment stage of a treatment facility.1.7 This test method is equivalent to ISO 14851.1.8 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific hazards statement, see Section 8.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Fire-retardant-treatments are used to reduce the flame-spread characteristics of wood. Chemicals and redrying conditions employed in treatments are known to modify the strength properties of the wood product being treated. This practice establishes the procedures for determining adjustment factors that account for the isolated effects of fire-retardant treatment on design properties of lumber. These effects are established relative to performance of untreated lumber.5.2 The effect of fire-retardant treatments on the strength of lumber used in roof framing applications is time related. In this practice, the cumulative effect on strength of annual thermal loads from all temperature bins is increased 50 times to establish treatment adjustment factors for fire-retardant treated lumber roof framing.5.3 The procedures of Test Method D5664 employ an elevated temperature intended to produce strength losses in a short period of time. Although the exposure is much more severe than that which occurs in an actual roof system, the chemical reactions that occur in the laboratory test are considered to be the same as those occurring over long periods of time in the field.5.4 Treatment adjustment factors developed under this practice apply to lumber installed in accordance with construction practices recommended by the fire-retardant chemical manufacturer which include avoidance of direct wetting, precipitation or frequent condensation. Application of this practice is limited to roof applications with design consistent with 1.3.1.1 This practice covers procedures for calculating adjustment factors that account for the effects of fire-retardant treatment on design properties of lumber. The adjustment factors calculated in accordance with this practice are to be applied to design values for untreated lumber in order to determine design values for fire-retardant-treated lumber used at ambient temperatures [service temperatures up to 100 °F (38 °C)] and as framing in roof systems.NOTE 1: This analysis focuses on the relative performance of treated and untreated materials tested after equilibrating to ambient conditions following a controlled exposure to specified conditions of high temperature and humidity. Elevated temperature, moisture, load duration, and other factors typically accounted for in the design of untreated lumber must also be considered in the design of fire-retardant-treated lumber, but are outside the scope of the treatment adjustments developed under this practice.1.2 These adjustment factors for the design properties in bending, tension parallel to grain, compression parallel to grain, horizontal shear, and modulus of elasticity are based on the results of strength tests of matched treated and untreated small clear wood specimens after conditioning at nominal room temperatures [72 °F (22 °C)] and of other similar specimens after exposure at 150 °F (66 °C). The test data are developed in accordance with Test Method D5664. Guidelines are provided for establishing adjustment factors for the property of compression perpendicular to grain and for connection design values.1.3 Treatment adjustment factors for roof framing applications are based on thermal load profiles for normal wood roof construction used in a variety of climates as defined by weather tapes of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE).2 The solar loads, moisture conditions, ventilation rates, and other parameters used in the computer model were selected to represent typical sloped roof designs. The thermal loads in this practice are applicable to roof slopes of 3 in 12 or steeper, to roofs designed with vent areas and vent locations conforming to national standards of practice and to designs in which the bottom side of the roof sheathing is exposed to ventilation air. For designs that do not have one or more of these base-line features, the applicability of this practice needs to be documented by the user.1.4 The procedures of this practice parallel those given in Practice D6305. General references and commentary in Practice D6305 are also applicable to this practice.1.5 The values stated in inch-pound units are to be regarded as standard. The SI units listed in parentheses are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The performance and quality of steam-treated materials depends upon the surface cleanliness of the material prior to steam treatment and the adequacy of the processing. Steam treatment can be used as a decorative coating, producing a blue-gray to a blue-black appearance. It can reduce the susceptibility of ferrous PM materials to further oxidation and corrosion, thus providing better shelf life. More significantly, improvements in apparent hardness, compressive strength, wear characteristics, and some mechanical properties (see Appendix X1) can be observed due to steam treatment. The hardness of magnetite (Fe3O4) formed during steam treatment is typically equivalent to 50 HRC, and when present in sintered materials, their wear resistance can be improved significantly. Steam treatment is also used to seal parts or provide a base material for additional coatings. Steam treated ferrous PM materials are used in many industries, including automotive, marine, home appliances, and lawn and garden applications.1.1 This guide is intended as an aid in establishing and maintaining a procedure for the steam treatment, also referred to as steam blackening, of sintered ferrous PM materials and the appropriate use and evaluation of these materials. Additional information concerning the effect of this process on ferrous PM material properties is contained in Appendix X1.1.2 Units—With the exception of the values for density and the mass used to determine density, for which the use of the gram per cubic centimetre (g/cm3) and gram (g) units is the longstanding industry practice, the values in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The procedure described in this test method is designed to provide a method by which the coating weight of zirconium treatments on metal substrates may be determined.4.2 This test method is applicable for determination of the total coating weight and the zirconium coating weight of a zirconium-containing treatment.1.1 This test method covers the use of X-ray fluorescence (XRF) spectrometry for the determination of the mass of zirconium (Zr) coating weight per unit area of metal substrates.1.2 Coating treatments can also be expressed in units of linear thickness provided that the density of the coating is known, or provided that a calibration curve has been established for thickness determination using standards with treatment matching this of test specimens to be analyzed. For simplicity, the method will subsequently refer to the determination expressed as coating weight.1.3 XRF is applicable for the determination of the coating weight as zirconium or total coating weight of a zirconium containing treatment, or both, on a variety of metal substrates.1.4 The maximum measurable coating weight for a given coating is that weight beyond which the intensity of the characteristic X-ray radiation from the coating or the substrate is no longer sensitive to small changes in weight.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM B661-12(2020) Standard Practice for Heat Treatment of Magnesium Alloys Active 发布日期 :  1970-01-01 实施日期 : 

This practice is intended as an aid for establishing a suitable procedure for the heat treatment of magnesium alloys to achieve the proper physical and mechanical properties. Air chamber furnaces that may be either electrically heated, or oil- or gas-fired, are usually used for the heat treatment process. Each furnace must be gas tight, have suitable equipment for protective atmosphere, be equipped with a high-velocity fan or any other comparable means for circulating the atmosphere, and designed so that no direct radiation from the heating elements or impingement of the flame on the magnesium. It is also important that the furnace be calibrated before it is used initially and after any change in the furnace. Likewise, temperature-measurement systems should be regularly checked for accuracy.1.1 This practice is intended as an aid in establishing a suitable procedure for the heat treatment of magnesium alloys to assure proper physical and mechanical properties.1.2 Times and temperatures are typical for various forms, sizes, and manufacturing methods and may not exactly describe the optimum heat treatment for a specific item. Consequently, it is not intended that this practice be used as a substitute for a detailed production process or procedure.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D1760-01 Standard Specification for Pressure Treatment of Timber Products (Withdrawn 2006) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This specification covers treatment of timber products by pressure processes in closed vessels with preservative materials and solutions. 1.2 This specification is divided into two general sections. Sections 1 - 9 cover requirements relating to all species and commodities, while Tables 1 - 7 show requirements relating to specific species and commodities. The purchaser should note that these individual requirements vary widely and, consequently, great care must be used in applying them in specific instances. 1.3 The values stated in inch-pound units are to be considered as standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This practice covers the requirements for the heat treatment of aluminum alloy castings from any casting process such as investment casting, permanent mould casting, sand casting, and others. It excludes castings that are used in specific aerospace applications or those made from wrought aluminum alloys. The aluminum alloys should be subjected to controlled heat treatment using the usual air chamber furnace or other heating media like lead baths, oil baths, fluidized beds, or even superheated steam. Air chambers may be oil or gas fired or may also be electrically heated but the atmosphere inside each should be controlled to prevent porosity. Quenching is normally performed by immersing castings in a hot-water bath. It is important that the furnace be calibrated before it is used initially and after any change in the furnace. Likewise, temperature-measurement systems should be regularly checked for accuracy.1.1 This practice covers, when specified by material specification or purchase order, the heat treatment of aluminum alloy castings from all casting processes.1.1.1 The heat treatment of aluminum alloy castings used in specific aerospace applications is covered in AMS 2771 and specific AMS material specifications.1.1.2 The heat treatment of wrought aluminum alloys is covered in Practice B918/B918M.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This practice is intended for use in the heat treatment of wrought aluminum alloys for general purpose applications. Aluminum alloys are typically heated in air chamber furnaces or molten salt baths. Though lead baths, oil baths, or fluidized beds may be used, uncontrolled heating is not permitted. The furnace temperature uniformity and calibration shall conform to the specified requirements. Preparation for heat treatment of alloys shall follow the racking, spacing, and cleanliness requirements. Solution heat treatment shall follow the recommended soaking times and quenching procedures. Precipitation heat treatment shall conform to the prescribed times, temperatures, and annealing procedures. The alloys shall be subjected to tensile testing, eutectic melting and heat-treat-induced porosity analysis, intergranular corrosion test, and Alclad diffusion test.1.1 This practice is intended for use in the heat treatment of wrought aluminum alloys for general purpose applications.1.1.1 The heat treatment of wrought aluminum alloys used in specific aerospace applications is covered in AMS2772.1.1.2 Heat treatment of aluminum alloy castings for general purpose applications is covered in Practice B917/B917M.1.2 Times and temperatures appearing in the heat-treatment tables are typical for various forms, sizes, and manufacturing methods and may not provide the optimum heat treatment for a specific item.1.3 Some alloys in the 6xxx series may achieve the T4 temper by quenching from within the solution temperature range during or immediately following a hot working process, such as upon emerging from an extrusion die. Such alternatives to furnace heating and immersion quenching are indicated in Table 1, by footnote L, for heat treatment of wrought aluminum alloys. However, this practice does not cover the requirements for a controlled extrusion press or hot rolling mill solution heat treatment; it only covers the requirements of artificial aging, annealing and associated pyrometry of those processes for products solution heat treated in accordance with Practices B807/B807M and B947. (Refer to Practice B807/B807M for extrusion press solution heat treatment of aluminum alloys and to Practice B947 for hot rolling mill solution heat treatment of aluminum alloys and associated pyrometry.)1.4 Units—The values stated in either Metric or US Customary units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 The following procedures and practices are intended to provide guidelines for processing and quality control that will provide acceptable results for the intended end use, keeping in mind the varying quality of the castings available.1.2 The recommendations are based on what have been acceptable industry standards and experiences for over 40 years of proven product usage.1.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This practice covers the full-length preservative treatment of utility poles by the thermal process.1.2 Poles furnished under this practice shall be limited to the following species: Douglas fir (Pseudotsuga menziesii),Lodgepole pine (Pinus contorta),Alaska yellow cedar (Chamaecyparis nootkatensis),Northern white cedar (Thuja occidentalis),and Western red cedar (Thuja plicata).1.3 The purchaser should note that requirements both within and between species vary and care must be used in selection of specific options for the intended use and service area.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method describes a rapid method to determine the maximum quantity of oxygen that may be consumed by impurities in water. As outlined in Test Methods D1252, chemical oxygen demand is typically used to monitor and control oxygen-consuming pollutants, both organic and inorganic, in domestic and industrial wastewaters. This photoelectrochemical oxygen demand test method is specific for measuring organics and inorganics in freshwater sources for drinking water treatment plants and treated drinking water matrices. This photoelectrochemical oxygen demand test method is not intended for domestic and industrial wastewaters to replace Test Methods D1252.5.2 This test method does not require the use of the hazardous reagents, such as mercuric sulfate, potassium dichromate and silver sulfate, that are associated with chemical oxygen demand. It can also provide a result more rapidly than chemical oxygen demand as samples do not require reflux.1.1 This test method covers a protocol for the determination of the photoelectrochemical oxygen demand of freshwater sources for drinking water treatment plants and treated drinking water in the range of 0.7 mg/L to 20 mg/L. Higher levels may be determined by sample dilution.1.2 Photoelectrochemical oxygen demand is determined using the current generated from the photoelectrochemical oxidation of the sample using titanium dioxide (TiO2) irradiated with ultraviolet (UV) light from a light-emitting diode (LED).1.3 This test method does not require the use of the hazardous reagents, such as mercuric sulfate, potassium dichromate and silver sulfate, that are often associated with the determination of chemical oxygen demand (that is, Test Methods D1252). It can also provide a result rapidly, as samples do not require reflux.1.4 Determination of photoelectrochemical oxygen demand in freshwater sources for drinking water treatment plants and treated drinking water matrices has important implications for assessing treatment efficacy. Photoelectrochemical oxygen demand can be used as a bulk surrogate measure of natural organic matter, a key target for drinking water treatment. In aerobic biological treatment processes, determination of photoelectrochemical oxygen demand can provide an estimation of the oxygen required by microorganisms to degrade organic matter. This test method is complementary to existing natural organic matter (NOM) monitoring techniques and will help scientists and engineers further the understanding of NOM in water with a rapid oxygen demand test.1.5 This test method was used successfully with reagent grade water spiked with pure compounds, freshwater sources for drinking water treatment plants and treated drinking water. It is the user’s responsibility to ensure the validity of this test method for waters of untested matrices.1.6 This test method is applicable to oxidizable matter, <50 µm that can be introduced into the sensor.NOTE 1: This test method can be performed (1) immediately in the field or laboratory on an unpreserved sample, and (2) in the laboratory on a properly preserved sample following the stated hold times.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice provides criteria for the verification of the silica sediment removal efficiency of hydrodynamic separators.4.2 Verification can be used to support certification of the technology within different AHJs provided that:4.2.1 HDS units are sized using the resulting performance data to treat the prescribed water quality flow rate or annual mass load requirement at the level of performance desired by the certifying entity.4.2.2 Scaling of results to different MTD model sizes is in accordance with this standard.4.2.3 The technology is designed consistently with the tested unit such that it operates within the specified limits determined by the verification as well as other restrictions placed by the certification entity.1.1 This practice covers the criteria for the laboratory verification of Hydrodynamic Separators (HDS) as it relates to the removal of suspended solids in stormwater runoff.1.2 HDS manufactured treatment devices are placed as offline or online treatment devices along storm drain pipe lines to remove suspended solids and associated pollutants from stormwater runoff. These devices may be used to target removal of other pollutants which are not covered in this standard. The criteria in this standard specifically relate to the removal of silica particles in controlled laboratory conditions, which is considered an appropriate surrogate for predicting the removal of stormwater solids from actual stormwater runoff.1.3 This practice provides guidelines for independent regulatory entities, collectively referred to as Authority Having Jurisdictions (AHJs), to streamline data requirements for the certification of HDS devices within their jurisdiction. For any given AHJ, additional criteria may also apply.1.4 Units—The values stated in inch-pound units are to be regarded as standard, except for methods to establish and report sediment concentration and particle size. It is convention to exclusively describe sediment concentration in mg/L and particle size in mm or μm, both of which are SI units. The SI units given in parentheses are mathematical conversions, which are provided for information purposes only and are not considered standard. Reporting of test results in units other than inch-pound units shall not be regarded as non-conformance with this test method.1.5 Acceptance of test results attained according to this specification may be subject to specific requirements set by a Quality Assurance Project Plan (QAPP), a specific verification protocol, or AHJ. It is advised to review one or all of the above to ensure compliance.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This practice is also intended to ensure that the data resulting from completion of testing in accordance with the ASTM test methods referenced herein can be utilized to satisfy the requirements of the New Jersey Department of Environmental Protection’s manufactured treatment device (MTD) certification process.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
39 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页