
【国外标准】 Standard Test Method for Photoelectrochemical Oxygen Demand of Freshwater Sources for Drinking Water Treatment Plants and Treated Drinking Water
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method describes a rapid method to determine the maximum quantity of oxygen that may be consumed by impurities in water. As outlined in Test Methods D1252, chemical oxygen demand is typically used to monitor and control oxygen-consuming pollutants, both organic and inorganic, in domestic and industrial wastewaters. This photoelectrochemical oxygen demand test method is specific for measuring organics and inorganics in freshwater sources for drinking water treatment plants and treated drinking water matrices. This photoelectrochemical oxygen demand test method is not intended for domestic and industrial wastewaters to replace Test Methods D1252.5.2 This test method does not require the use of the hazardous reagents, such as mercuric sulfate, potassium dichromate and silver sulfate, that are associated with chemical oxygen demand. It can also provide a result more rapidly than chemical oxygen demand as samples do not require reflux.1.1 This test method covers a protocol for the determination of the photoelectrochemical oxygen demand of freshwater sources for drinking water treatment plants and treated drinking water in the range of 0.7 mg/L to 20 mg/L. Higher levels may be determined by sample dilution.1.2 Photoelectrochemical oxygen demand is determined using the current generated from the photoelectrochemical oxidation of the sample using titanium dioxide (TiO2) irradiated with ultraviolet (UV) light from a light-emitting diode (LED).1.3 This test method does not require the use of the hazardous reagents, such as mercuric sulfate, potassium dichromate and silver sulfate, that are often associated with the determination of chemical oxygen demand (that is, Test Methods D1252). It can also provide a result rapidly, as samples do not require reflux.1.4 Determination of photoelectrochemical oxygen demand in freshwater sources for drinking water treatment plants and treated drinking water matrices has important implications for assessing treatment efficacy. Photoelectrochemical oxygen demand can be used as a bulk surrogate measure of natural organic matter, a key target for drinking water treatment. In aerobic biological treatment processes, determination of photoelectrochemical oxygen demand can provide an estimation of the oxygen required by microorganisms to degrade organic matter. This test method is complementary to existing natural organic matter (NOM) monitoring techniques and will help scientists and engineers further the understanding of NOM in water with a rapid oxygen demand test.1.5 This test method was used successfully with reagent grade water spiked with pure compounds, freshwater sources for drinking water treatment plants and treated drinking water. It is the user’s responsibility to ensure the validity of this test method for waters of untested matrices.1.6 This test method is applicable to oxidizable matter, <50 µm that can be introduced into the sensor.NOTE 1: This test method can be performed (1) immediately in the field or laboratory on an unpreserved sample, and (2) in the laboratory on a properly preserved sample following the stated hold times.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8084-17
标准名称:
Standard Test Method for Photoelectrochemical Oxygen Demand of Freshwater Sources for Drinking Water Treatment Plants and Treated Drinking Water
英文名称:
Standard Test Method for Photoelectrochemical Oxygen Demand of Freshwater Sources for Drinking Water Treatment Plants and Treated Drinking Water标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D8083-16(2023) Standard Test Method for Total Nitrogen, and Total Kjeldahl Nitrogen (TKN) by Calculation, in Water by High Temperature Catalytic Combustion and Chemiluminescence Detection
- 下一篇: ASTM D8085-17 Standard Specification for Non-Aqueous Engine Coolant for Automobile and Light-Duty Service
- 推荐标准
- ASTM E1160-13(2021) Standard Guide for On-Site Inspection and Verification of Operation of Solar Domestic Hot Water Systems
- ASTM E1162-11(2019) Standard Practice for Reporting Sputter Depth Profile Data in Secondary Ion Mass Spectrometry (SIMS)
- ASTM E1164-23 Standard Practice for Obtaining Spectrometric Data for Object-Color Evaluation
- ASTM E1173-23 Standard Practice for Evaluation of Preoperative, Precatheterization, or Preinjection Skin Preparations
- ASTM E1174-21 Standard Test Method for Evaluation of the Effectiveness of Healthcare Personnel Handwash Formulations
- ASTM E1179-13(2019) Standard Specification for Sound Sources Used for Testing Open Office Components and Systems
- ASTM E1180-08(2021) Standard Practice for Preparing Sulfur Prints for Macrostructural Evaluation
- ASTM E1198-19 Standard Practice for Sampling Zooplankton with Pumps
- ASTM E1199-19 Standard Practice for Sampling Zooplankton with a Clarke-Bumpus Plankton Sampler
- ASTM E1208-21 Standard Practice for Fluorescent Liquid Penetrant Testing Using the Lipophilic Post-Emulsification Process
- ASTM E1211/E1211M-17 Standard Practice for Leak Detection and Location Using Surface-Mounted Acoustic Emission Sensors
- ASTM E1213-14(2022) Standard Practice for Minimum Resolvable Temperature Difference for Thermal Imaging Systems
- ASTM E1218-21 Standard Guide for Conducting Static Toxicity Tests with Microalgae
- ASTM E1219-21 Standard Practice for Fluorescent Liquid Penetrant Testing Using the Solvent-Removable Process
- ASTM E122-17(2022) Standard Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process