微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Control over the residue content as specified in Specification D1835 is of considerable importance in end-use applications of LPG. Oily residue in LPG is contamination which can occur during production, transportation, or storage.5.2 This test method is quicker and much more sensitive than manual methods, such as Test Method D2158, which is based on evaporation of large sample volumes followed by visual or gravimetric estimation of residue content.5.3 This test method provides enhanced sensitivity in measurements of heavier (oily) residues, with a quantification limit of 10 mg/kg total residue.5.4 This test method gives both quantitative results and information about contaminant composition such as boiling point range and fingerprint, which can be very useful in tracing the source of a particular contaminant.1.1 This test method covers the determination, by gas chromatography, of soluble hydrocarbon materials, sometimes called “oily residue,” which can be present in liquefied petroleum (LP) gases and which are substantially less volatile than the LPG product.1.2 This test method quantifies, in the range of 10 mg/kg to 600 mg/kg (ppm mass), the residue with a boiling point between 174 °C and 522 °C (C10 to C40) in LPG. Higher boiling materials, or materials that adhere permanently to the chromatographic column, will not be detected.1.3 Appendix X3, Appendix X4, and Appendix X6 describe additional applications which could be performed based on the hardware and procedures described in this test method. Appendix X3 describes a test procedure for expanding the analysis range to benzene, Appendix X4 describes a test procedure for the analysis of diisopropanolamine, and Appendix X6 describes a test procedure for the analysis of heavy residues or contaminants from C40 to about C60 in LPG.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

4.1 The sulfur content of LPG, used for fuel purposes, contributes to SOx emissions and can lead to corrosion in engine and exhaust systems. Some process catalysts used in petroleum and chemical refining can be poisoned by sulfur bearing materials in the feed stocks. This test method can be used to determine sulfur in process feeds, to measure sulfur in finished products, and can also be used for compliance determinations when acceptable to a regulatory authority.1.1 This test method covers the determination of total volatile sulfur in gaseous hydrocarbons and liquefied petroleum (LP) gases. It is applicable to analysis of natural, processed, and final product materials. Precision has been determined for sulfur in gaseous hydrocarbons in the range of 1 mg/kg to 100 mg/kg and for sulfur in LP gases in the range of 1 mg/kg to 196 mg/kg (Note 1).NOTE 1: An estimate of pooled limit of quantification (PLOQ), information regarding sample stability and other general information derived from the interlaboratory studies on precision can be referenced in the ASTM research reports.2,31.2 This test method may not detect sulfur compounds that do not vaporize under the conditions of the test.1.3 This test method is applicable for total volatile sulfur determination in LP gases containing less than 0.35 % (mass/mass) halogen(s).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See 3.1 and Sections 6 and 7 for specific warning statements.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Gas chromatography with sulfur selective detection provides a rapid means to identify and quantify sulfur compounds in various petroleum feeds and products. Often these materials contain varying amounts and types of sulfur compounds. Many sulfur compounds are odorous, corrosive to equipment, and inhibit or destroy catalysts employed in downstream processing. The ability to speciate sulfur compounds in various petroleum liquids is useful in controlling sulfur compounds in finished products and is frequently more important than knowledge of the total sulfur content alone.1.1 This test method covers the determination of volatile sulfur-containing compounds in light petroleum liquids. This test method is applicable to distillates, gasoline motor fuels (including those containing oxygenates) and other petroleum liquids with a final boiling point of approximately 230 °C (450 °F) or lower at atmospheric pressure. The applicable concentration range will vary to some extent depending on the nature of the sample and the instrumentation used; however, in most cases, the test method is applicable to the determination of individual sulfur species at levels of 0.1 mg/kg to 100 mg/kg.1.2 The test method does not purport to identify all individual sulfur components. Detector response to sulfur is linear and essentially equimolar for all sulfur compounds within the scope (1.1) of this test method; thus both unidentified and known individual compounds are determined. However, many sulfur compounds, for example, hydrogen sulfide and mercaptans, are reactive and their concentration in samples may change during sampling and analysis. Coincidently, the total sulfur content of samples is estimated from the sum of the individual compounds determined; however, this test method is not the preferred method for determination of total sulfur.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This guide covers a process to rapidly and accurately characterize a confirmed or suspected petroleum release site. This guide is intended to provide a framework for responsible parties, contractors, consultants, and regulators to streamline and accelerate the site characterization process or supplement incomplete characterization data. The accelerated site characterization (ASC) approach may be incorporated in state and local regulations as a cost-effective method of making informed corrective action decisions sooner.1.2 This guide describes a process for collecting site characterization information in one mobilization, using rapid sampling techniques; field analytical methods; and on-site interpretation and iteration of field data to refine the conceptual model for understanding site conditions as the characterization proceeds. This information can be used to determine the need for interim remedial actions; site classification or prioritization, or both; further corrective actions; and active remediation. The process outlined in this guide can be incorporated into existing corrective action programs, and is organized to be used in conjunction with Guides E 1599 and E 1739.1.3 For guidance concerning contractor health and safety issues, appropriate federal, state, and local regulations (for example, Occupational Safety and Health Administration) and industry standards should be consulted. For sampling quality assurance/quality control (QA/QC) practices, see references in Section . Considerations for field analytical method quality assurance/quality control are discussed in Section 5.1.4 This guide is organized as follows:1.4.1 Section 1 describes the scope,1.4.2 Section 2 lists Referenced Documents,1.4.3 Section 3 defines Terminology,1.4.4 Section 4 identifies the Significance and Use,1.4.5 Section 5 describes the Accelerated Site Characterization Process,1.4.6 Appendix X1 identifies Additional Referenced Documents,1.4.7 Appendix X2 provides an Example of a Data Quality Classification System,1.4.8 Appendix X3 contains a list of physical and chemical properties and hydrogeologic characteristics applicable to site characterizations, and a list of input parameters and methodologies for ASTM RBCA Tier 1 and Tier 2 evaluations, and1.4.9 Appendix X4 contains a case study example of the ASC process, including a RBCA Tier 1 and Tier 2 evaluation.1.5 The values stated in inch-pound units are to be regarded as the standard. The SI units given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 A standard test is necessary to establish a behavior pattern for spilled crude oils or petroleum products at different oil weathering stages.4.2 Water-in-oil mixtures vary with oil type and oil conditions such as weathering. Results from this test method form a baseline, and usually are a measure of behavior at sea.4.3 This test has been developed over many years using standardized equipment, test procedures, and to overcome difficulties noted in other test procedures.4.4 This test should be performed at the temperatures and degrees of weathering corresponding to the spill conditions of interest.1.1 This test method covers a procedure to determine the water-in-oil emulsification tendencies and stabilities of crude oils and petroleum products in the laboratory. The results of this test method can provide oil behavior data for input into oil spill models.1.2 This test method covers a specific method of determining emulsion tendencies and does not cover other procedures that may be applicable to determining emulsion tendencies.1.3 The test results obtained using this test method are intended to provide baseline data for the behavior of oil and petroleum products at sea and input to oil spill models.1.4 The test results obtained using this test method can be used directly to predict certain facets of oil spill behavior or as input to oil spill models.1.5 The accuracy of the test method depends very much on the representative nature of the oil sample used. Certain oils can form a variety of water-in-oil types depending on their chemical contents at the moment a sample is taken. Other oils are relatively stable with respect to the type formed1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The boiling range distribution of light and medium petroleum distillate fractions provides an insight into the composition of feed stocks and products related to petroleum refining process, This gas chromatographic determination of boiling range can be used to replace conventional distillation methods for control of refining operations. This test method can be used for product specification testing with the mutual agreement of interested parties.5.2 This test method extends the scope of boiling range determination by gas chromatography to include light and medium petroleum distillate fractions beyond the scope of Test Method D2887 (538 °C) and below Test Method D6352 (700 °C).5.3 Boiling range distributions obtained by this test method are theoretically equivalent to those obtained by true boiling point (TBP) distillation (see Test Method D2892). They are not equivalent to results from low efficiency distillation such as those obtained with Test Method D86 or D1160.1.1 This test method covers the determination of the boiling range distribution of petroleum products. This test method is applicable to petroleum distillates having an initial boiling point greater than 100 °C and a final boiling point less than 615 °C at atmospheric pressure as measured by this test method.1.2 The test method is not applicable for analysis of petroleum distillates containing low molecular weight components (for example, naphthas, reformates, gasolines, crude oils). Materials containing heterogeneous components (for example, alcohols, ethers, acids or esters) or residue are not to be analyzed by this test method. See Test Methods D7096, D2887, D6352, or D7169.1.3 This test method uses the principles of simulated distillation methodology.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Knowledge of gas solubility is of extreme importance in the lubrication of gas compressors. It is believed to be a substantial factor in boundary lubrication, where the sudden release of dissolved gas may cause cavitation erosion, or even collapse of the fluid film. In hydraulic and seal oils, gas dissolved at high pressure can cause excessive foaming on release of the pressure. In aviation oils and fuels, the difference in pressure between take-off and cruise altitude can cause foaming out of the storage vessels and interrupt flow to the pumps.1.1 This test method covers the estimation of the equilibrium solubility of several common gases encountered in the aerospace industry in hydrocarbon liquids. These include petroleum fractions with densities in the range from 0.63 to 0.90 at 288 K (59°F). The solubilities can be estimated over the temperature range 228 K (−50°F) to 423 K (302°F).1.2 This test method is based on the Clausius-Clapeyron equation, Henry's law, and the perfect gas law, with empirically assigned constants for the variation with density and for each gas.1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

Direct push LIF is used for site investigations where the delineation of petroleum hydrocarbons and other fluorophores is necessary. Generic terms for these investigations are site assessments and hazardous waste site investigations. Continuous LIF is used to provide information on the relative amounts of contamination and to provide a lithological detail of the subsurface strata. These investigations are frequently required in the characterization of hazardous waste sites. This technology provides preliminary results within minutes following the completion of each test. This allows the number, locations, and depths of subsequent tests to be adjusted in the field. Field adjustment may increase the efficiency of the investigation program. The rapid fluorescence data gathering provided by direct push LIF provides information necessary to assess the presence of contamination in soils and associated pore fluids in the field. This method allows for immediate determination of relative amounts of contamination. This allows the number, locations, and depths of subsequent activities to be adjusted in the field. Field adjustment may increase the efficiency of the investigation program. With appropriate sensors, the direct-push investigation program can provide information on soil stratigraphy and the distribution of petroleum and other fluorophores in the subsurface. This method results in minimum site disturbance and generates no cuttings that might require disposal (1). This practice is confirmed using soil samples collected at given depths to confirm the fluorescence readings using a field deployed EPA Method 418.1 (2), EPA method 8015-modified, and a modified EPA 8270 Method (3), or equivalent methodologies, as compared to the fluorescence reading from the same depth from the sensor to verify that the fluorescence correlates with the contamination. The collected samples are also tested on the probe window in the truck to ensure the sample collected is representative of the region tested in situ. This practice may not be the correct method for preliminary or supplemental investigations in all cases. Chemical and physical properties of site specific soil matrices may have an effect on site specific detection limits. Subsurface conditions affect the performance of the equipment and methods associated with the direct push method. Direct push methods are not effective in pushing in solid bedrock and are marginally effective in pushing in weathered formations. Dense gravelly tills where boulders and cobbles are present, stiff and hard clays, and cemented soil zones may cause refusal and potential probe breakage. Certain cohesive soils, depending on their moisture content, can create friction on the cone penetrometer probes which can eventually equal or exceed the static reaction force and/or the impact energy being applied. As with all direct push methods, precautions must be taken to prevent cross contamination of aquifers through migration of contaminants up or down the cone penetrometer hole. The practicing of direct push techniques may be controlled by various government regulations governing subsurface explorations. Certification or licensing regulations, or both, may in some cases be considered in establishing performance criteria. For additional information see (4-15)1.1 This practice covers the method for delineating the subsurface presence of petroleum hydrocarbons and other hydrocarbons using a fiber optic based nitrogen laser-induced fluorescence sensor system. 1.2 The petroleum hydrocarbon sensing scheme utilizes a fluorescence technique in which a nitrogen laser emits pulsed ultraviolet light. The laser, mounted on the cone penetrometer platform, is linked via fiber optic cables to a window mounted on the side of a penetrometer probe. Laser energy emitted through the window causes fluorescence in adjacent contaminated media. The fluorescent radiation is transmitted to the surface via optical cables for real-time spectral data acquisition and spectral analysis on the platform. 1.3 This sensor responds to any material that fluoresces when excited with ultraviolet wavelengths of light, largely the polycyclic aromatic, aromatic, and substituted hydrocarbons, along with a few heterocyclic hydrocarbons. The excitation energy will cause all encountered fluorophores to fluoresce, including some minerals and some non-petroleum organic matter. However, because the sensor collects full spectral information, discrimination among the fluorophores may be distinguished using the spectral features associated with the data. Soil samples should be taken to verify recurring spectral signatures to discriminate between fluorescing petroleum hydrocarbons and naturally occurring fluorophores. 1.4 This practice is used in conjunction with a cone penetrometer of the electronic type, described in Test Method D5778. 1.4.1 The direct push LIF described in this practice can provide accurate information on the characteristics of the soils and contaminants encountered in the vadose zone and the saturated zone, although it does not make a distinction between dissolved and sorbed contamination in the saturated zone. 1.5 This practice describes rapid, continuous, in-situ, real-time characterization of subsurface soil. 1.6 Direct push LIF is limited to soils that can be penetrated with the available equipment. The ability to penetrate strata is based on carrying vehicle weight, density of soil, and consistency of soil. Penetration may be limited; or, damage to sensors can occur in certain ground conditions. 1.7 This practice does not address the installation of any temporary or permanent soil, groundwater, soil vapor monitoring, or remediation devices; although, the devices described may be left in-situ for the purpose of on-going monitoring. 1.8 The values stated in inch-pound units are to be regarded as the standard. The SI units given in parentheses are for information only. 1.9 Direct push LIF environmental site characterization will often involve safety planning, administration, and documentation. This practice does not purport to address the issues of operational or site safety. 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The composition of the oil included in rubber compounds has a large effect on the characteristics and uses of the compounds. The determination of the saturates, aromatics, and polar compounds is a key analysis of this composition.5.2 The determination of the saturates, aromatics, and polar compounds and further analysis of the fractions produced is often used as a research method to aid understanding of oil effects in rubber and other uses.1.1 This test method covers a procedure for classifying oil samples of initial boiling point of at least 260 °C (500 °F) into the hydrocarbon types of polar compounds, aromatics and saturates, and recovery of representative fractions of these types. This classification is used for specification purposes in rubber extender and processing oils.NOTE 1: See Test Method D2226.1.2 This test method is not directly applicable to oils of greater than 0.1 % by mass pentane insolubles. Such oils can be analyzed after removal of these materials, but precision is degraded (see Appendix X1).1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 6.1, Section 7, A1.4.1, and A1.5.5.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is an indicator of the wear characteristics of petroleum hydraulic fluids operating in a constant volume vane pump. Excessive wear in vane pumps could lead to malfunction of hydraulic systems in critical industrial or mobile hydraulic applications.1.1 This test method covers a constant volume high-pressure vane pump test procedure for indicating the wear characteristics of petroleum hydraulic fluids. See Annex A1 for recommended testing conditions for water-based synthetic fluids.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The absorbance of liquids and the absorptivity of liquid and solids at specified wavelengths in the ultraviolet are useful in characterizing petroleum products.1.1 This test method covers the measurement of the ultraviolet absorption of a variety of petroleum products. It covers the absorbance of liquids or the absorptivity of liquids and solids, or both, at wavelengths in the region from 220 nm to 400 nm of the spectrum.1.2 The use of this test method implies that the conditions of measurement—wavelength, solvent (if any), sample path length, and sample concentration—are specified by reference to one of the examples of the application of this test method in the annexes or by a statement of other conditions of measurement.1.3 Examples of the application of this test method are the absorptivity of refined petroleum wax, and the absorptivity of USP petrolatum.1.4 The values stated in SI units are to be regarded as the standard. The values stated in Fahrenheit, feet, and inches, indicated in parentheses, are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.3.1, 7.3.3, and 13.4.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The approach presented in this guide is a practical and streamlined process for determining the appropriateness of remediation by natural attenuation and implementing remediation by natural attenuation at a given petroleum release site. This information can be used to evaluate remediation by natural attenuation along with other remedial options for each site.4.2 In general, remediation by natural attenuation may be used in the following instances:4.2.1 As the sole remedial action at sites where immediate threats to human health, safety and the environment do not exist or have been mitigated, and constituents of concern are unlikely to impact a receptor;4.2.2 As a subsequent phase of remediation after another remedial action has sufficiently reduced concentrations/mass in the source area so that plume impacts on receptors are unlikely; or4.2.3 As a part of a multi-component remediation plan.4.3 This guide is intended to be used by environmental consultants, industry, and state and federal regulators involved in response actions at petroleum release sites. Activities described in this guide should be performed by a person appropriately trained to conduct the corrective action process.4.4 The implementation of remediation by natural attenuation requires that the user exercise the same care and professional judgement as with any other remedial alternative by:4.4.1 Ensuring that site characterization activities focus on collecting information required to evaluate and implement remediation by natural attenuation;4.4.2 Evaluating information to understand natural attenuation processes present at the site;4.4.3 Determining whether remediation by natural attenuation is the most appropriate and cost-effective remedial alternative with a reasonable probability of achieving remedial goals; and4.4.4 Monitoring remedial progress.4.5 Application and implementation of remediation by natural attenuation is intended to be compatible with Guide E1739 or other risk-based corrective action programs.4.6 This guide does not address specific technical details of remediation by natural attenuation implementation such as site characterization (see Guide E1912), sampling, data interpretation, or quantifying rates. For additional discussion and guidance concerning these technical issues for remediation by natural attenuation see Appendix X1 through Appendix X7.4.7 This guide does not specifically address considerations and concerns associated with natural attenuation of non-petroleum constituents, such as chlorinated solvents. Care must be taken to ensure that degradation by-products will not cause harm to human health or the environment. In addition, if constituents are present which do not readily attenuate, such as methyl-t-butyl ether (MTBE), remediation by natural attenuation may not be a suitable remedial alternative or may need to be supplemented with other remedial technologies.4.8 This guide is intended to be consistent with Guide E1599 and U.S. EPA guidance for implementation of remediation by natural attenuation (U.S. EPA, 1995, Chapter 9).51.1 This is a guide for determining the appropriateness of remediation by natural attenuation and implementing remediation by natural attenuation at a given petroleum release site, either as a stand alone remedial action or in combination with other remedial actions.1.2 Natural attenuation is a potential remediation alternative for containment and reduction of the mass and concentration of petroleum hydrocarbons in the environment to protect human health and the environment. Remediation by natural attenuation depends upon natural processes such as biodegradation, dispersion, dilution, volatilization, hydrolysis, and sorption to attenuate petroleum constituents of concern to achieve remedial goals.NOTE 1: Remedial goals must be established through another process as determined by the appropriate regulatory agency.1.3 In general, remediation by natural attenuation should not be considered a presumptive remedy. A determination of whether remediation by natural attenuation is appropriate for an individual petroleum release site, relative to site-specific remedial goals, requires site characterization, assessment of potential risks, evaluation of the need for source area control, and evaluation of potential effectiveness similar to other remedial action technologies. Application and implementation of remediation by natural attenuation requires demonstration of remedial progress and attainment of remedial goals by use of converging lines of evidence obtained through monitoring and evaluation of resulting data. When properly applied to a site, remediation by natural attenuation is a process for risk management and achieving remedial goals. Monitoring should be conducted until it has been demonstrated that natural attenuation will continue and eventually meet remedial goals.1.3.1 The primary line of evidence for remediation by natural attenuation is provided by observed reductions in plume geometry and observed reductions in concentrations of the constituents of concern at the site.1.3.2 Secondary lines of evidence for remediation by natural attenuation are provided by geochemical indicators of naturally occurring degradation and estimates of attenuation rates.1.3.3 Additional optional lines of evidence can be provided by microbiological information and further analysis of primary and secondary lines of evidence such as through solute transport modeling or estimates of assimilative capacity.1.4 The emphasis in this guide is on the use of remediation by natural attenuation for petroleum hydrocarbon constituents where ground water is impacted. Though soil and ground water impacts are often linked, this guide does not address natural attenuation in soils separate from ground water or in situations where soils containing constituents of concern exist without an associated ground water impact. Even if natural attenuation is selected as the remedial action for ground water, additional remedial action may be necessary to address other completed exposure pathways at the site.1.5 This guide does not address enhanced bioremediation or enhanced attenuation.1.6 Also, while much of what is discussed is relevant to other organic chemicals or constituents of concern, these situations will involve additional considerations not addressed in this guide.1.7 The guide is organized as follows:1.7.1 Section 2 lists referenced documents.1.7.2 Section 3 defines terminology used in this guide.1.7.3 Section 4 describes the significance and use of this guide.1.7.4 Section 5 provides an overview of the use of natural attenuation as a remedial action alternative, including;1.7.4.1 Advantages of remediation by natural attenuation as a remedial alternative;1.7.4.2 Limitations of remediation by natural attenuation as a remedial alternative; and1.7.4.3 Using multiple lines of evidence to demonstrate the appropriateness of remediation by natural remediation.1.7.5 Section 6 describes the decision process for appropriate application and implementation of remediation by natural attenuation including;1.7.5.1 Initial response, site characterization, selection of chemicals of concern, and establishment of remedial goals;1.7.5.2 Evaluation of plume status;1.7.5.3 Collection and evaluation of additional data;1.7.5.4 Comparing remediation by natural attenuation performance to remedial goals;1.7.5.5 Comparing remediation by natural attenuation to other remedial options;1.7.5.6 Implementation of a continued monitoring program;1.7.5.7 Evaluation of progress of remediation by natural attenuation; and1.7.5.8 No further action.1.7.6 Section 7 lists keywords relevant to this guide.1.7.7 Appendix X1 describes natural attenuation processes;1.7.8 Appendix X2 describes site characterization requirements for evaluating remediation by natural attenuation;1.7.9 Appendix X3 describes considerations for designing and implementing monitoring for remediation by natural attenuation;1.7.10 Appendix X4 describes sampling considerations and analytical methods for determining indicator parameters for remediation by natural attenuation;1.7.11 Appendix X5 describes the interpretation of different lines of evidence as indicators of natural attenuation;1.7.12 Appendix X6 describes methods for evaluation and quantification of natural attenuation rates; and1.7.13 Appendix X7 describes example problems illustrating the application and implementation of remediation by natural attenuation.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of any regulatory limitations prior to use.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

It is important to have the sulfur content of liquefied petroleum gases at low enough concentration to meet government regulations. The presence of sulfur can result in corrosion of metal surfaces. Sulfur can be poisonous to catalysts in subsequent processing.1.1 This test method covers the determination of total sulfur in liquefied petroleum gases containing more than 1 μg/g. Specimens should not contain more than 100 μg/g of halogens.1.2 To attain the quantitative detectability that the test method is capable of, stringent techniques must be employed and all possible sources of sulfur contamination must be eliminated. In particular, cleaning agents, such as common household detergents which contain sulfates, should be avoided.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

PKP values indicate high aromatic or high naphthenic content, or both, which contributes to high relative solvency of the oil.1.1 This test method covers a procedure for determining the relative solvency of petroleum oils used in ink formulations by a pentaerythritol ester of resin acids (PKP) titration. 1.2 This test method is applicable to petroleum oils that have an initial boiling point over 90oC and a dry point under 500oC as determined by Method D86. 1.3 This test method, along with viscosity measurements as determined by Test Method D445, is used to ensure the compositional consistency of petroleum oils. It can also differentiate between hydrotreated and non-hydrotreated oils that have the same viscosity. 1.4 This test method includes the use of a U.S. Occupational Safety and Health Administration (OSHA)-designated flammable chemical, pentane. Consult the suppliers' material safety data sheet for specific hazard information and guidance relative to use. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 1.3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The boiling range distribution of petroleum distillate fractions provides an insight into the composition of feed stocks and products related to petroleum refining processes. A major advantage of the fast analysis time obtained by this test method is increasing product through put and reduced lab testing time by a minimum factor of 3. This gas chromatographic determination of boiling range may be used to replace conventional distillation methods for control of refining operations and for product specification testing with the mutual agreement of interested parties.5.2 Boiling range distributions obtained by this test method are essentially equivalent to those obtained by true boiling point (TBP) distillation (see Test Method D2892). They are not equivalent to results from low efficiency distillations such as those obtained with Test Method D86 or D1160.1.1 This test method covers the determination of the boiling range distribution of petroleum products and biodiesel formulations, B5, B10, and B20. It is applicable to petroleum distillates having a final boiling point not greater than 538 °C or lower at atmospheric pressure as measured by this test method. The difference between the initial boiling point and the final boiling point shall be greater than 55 °C.1.2 The test method is not applicable for analysis of petroleum distillates containing low molecular weight components (for example naphthas, reformates, gasolines, full range crude oils). Materials containing heterogeneous mixtures (for example, alcohols, ethers, acids or esters, except biodiesels) or residue are not to be analyzed by this test method. See Test Methods D3710, D7096, D6352, or D7169.1.3 This test method uses the principles of simulated distillation methodology. This test method uses gas chromatographic components that allow the entire analysis from sample to sample to occur in 5 min or less. In these instruments the column is heated directly at rates 10 to 15 times that of a conventional gas chromatograph and thus the analysis time is reduced from sample to sample.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4.1 Exception—Appendix X1 includes temperatures in Fahrenheit for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
194 条记录,每页 15 条,当前第 12 / 13 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页