微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method provides accurate biobased/biogenic carbon content results to materials whose carbon source was directly in equilibrium with CO2 in the atmosphere at the time of cessation of respiration or metabolism, such as the harvesting of a crop or grass living in a field. Special considerations are needed to apply the testing method to materials originating from within artificial environments with non-natural levels of 14C or if the biofeed was grown over the course of several years such as trees and contains “bomb-carbon.” Application of these test methods to materials derived from CO2 uptake within artificial environments is beyond the present scope of this standard.5.2 This method uses LSC techniques to quantify the biobased content of a liquid hydrocarbon fuels using sample carbon that has been unmodified. It is designed to be able to incorporate into a refinery laboratory to support biofeed and petroleum coprocessing or blending operations to determine the biocarbon content of the intermediate or finished products. The test results can then be used for optimizing internal parameters or reporting to regulatory agencies.5.3 The use of this method requires that a pure petroleum-based sample can be generated that has a similar matrix to each product or stream to be analyzed. For example, gasoline and diesel have very different matrices and will likely require the use of different background measurements for each. Refer to 10.2 for how to determine if the same background sample can be used for more than one product/stream.1.1 This test method covers quantitatively determining biocarbon content of liquid hydrocarbon fuels with a focus on those produced in a typical petroleum refinery using liquid scintillation counting (LSC). The method is designed to generate analogous results as Test Method D6866 Method C, for low quench samples, without the need of benzene synthesis. The purpose is to be able to use the produced data to report biocarbon content of refinery products to regulatory agencies and monitor refinery operation. The method does not address regulatory reporting or fuel performance.1.2 The method is needed to support refinery operations when bio-feeds are co-processed with petroleum within a reactor with a focus on samples with 100 % biocarbon or less (not for 14C labeled species). It allows refineries to report the biocarbon content of refinery products to regulatory agencies such as the Environmental Protection Agency (EPA) or California Air Resources Board (CARB) to comply with regulatory statutes such as The Renewable Fuel Standard (RFS) or Low Carbon Fuel Standard (LCFS).1.3 This test method is applicable to any liquid fuel product, petroleum based (pure hydrocarbon), biobased (such as renewable diesel or those that can contain oxygenates such as ethanol), or blends, that contain 1 % to 100 % by mass biocarbon where an instrument background can be experimentally determined using a sample of similar matrix that contains no measurable carbon-14.1.4 This test method makes no attempt to teach the basic principles of the instrumentation used although minimum requirements for instrument selection are referenced in Refs (1-11).2 However, the preparation of samples for the above test methods is described. No details of instrument operation are included here. These are best obtained from the manufacturer of the specific instrument in use.1.5 Pre-Requisite Requirements For Method Execution—This test method uses artificial carbon-14 (14C) within the method. Great care shall be taken to prevent laboratory contamination of the elevated 14C. Once in the laboratory, artificial 14C can contaminate a variety of laboratory surfaces that can lead to artificially high sample biocarbon measurements. If vigorous cleaning attempts to remove the artificial 14C from a laboratory are unsuccessful, instrumentation and sample preparation may have to be moved to a new laboratory away from the contamination or the laboratory may have to rely on outside third-party labs for analysis. Specific procedural steps have been incorporated into this method that minimize the risk of sample and lab contamination. Wipe tests and quality assurance samples can validate absence of contamination. In the event of contamination in the laboratory or instrument, vigorous cleaning protocols shall be implemented, and analysis cannot be resumed until the lab and instrument are free of contamination. Accepted requirements are:1.5.1 Working with the elevated 14C samples in a separate and defined area away from the instrument and the preparation of any non-spiked samples.1.5.2 Using separate personnel to prepare the spiked samples and non-spiked samples.1.5.3 Using separate laboratory spaces with separate HVAC systems for the handling of spiked and non-spiked samples. The use of separate fume hoods that have separate exhaust ventilation satisfies this requirement.1.5.4 Weekly wipe tests of 14C sample handling area(s) to detect lab contamination.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This specification covers low-boiling hydrocarbon systems for preparing solutions of oil-borne preservatives.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 For hydrocarbon resins and rosin based resins, softening does not take place at a definite temperature. As the temperature rises, these materials gradually change from brittle solids or very viscous liquids to less viscous liquids. For this reason, determination of the softening point must be made by a fixed, arbitrary, and closely defined method if the results obtained are to be comparable.1.1 These test methods are intended for determining the softening point of hydrocarbon resins, rosin based resins and similar materials by means of an automated ring-and-ball apparatus. Portions are similar in technical content to the automated-apparatus versions of Test Methods D36, E28, and ISO 4625.1.1.1 The ring-and-ball softening point of a hydrocarbon resin and rosin based resins may also be determined with lower precision using the manual ring-and-ball softening point procedure in Test Methods E28.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The presence of trace amounts of hydrogen, oxygen, and carbon monoxide can have deleterious effects in certain processes using hydrocarbon products as feed stock. This test method is suitable for setting specifications, for use as an internal quality control tool and for use in development or research work.1.1 This test method covers the determination of hydrogen, nitrogen, oxygen, and carbon monoxide in the parts per million volume (ppmv) range in C2 and lighter hydrocarbon products. This test method should be applicable to light hydrocarbons other than ethylene, but the test program did not include them.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For some specific hazard statements, see the Annex A1.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This specification applies to the maximum content of eight PAHs (PAH8) in materials used as synthetic turf infill.1.2 This specification outlines a test method for sample preparation and the method for analyzing the content of the eight PAHs in synthetic turf infill.1.3 This specification provides guidelines for reporting the content of the eight PAHs in the synthetic turf infill.1.4 This specification is applicable to any infill material used in synthetic turf.1.5 The values stated in SI units are to be regarded as standard. No other units are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Aromatic content is a key characteristic of hydrocarbon oils and can affect a variety of properties of the oil including its boiling range, viscosity, stability, and compatibility of the oil with polymers.5.2 Existing methods for estimating aromatic contents use physical measurements, such as refractive index, density, and number average molecular weight (see Test Method D3238) or infrared absorbance4 and often depend on the availability of suitable standards. These NMR procedures do not require standards of known aromatic hydrogen or aromatic carbon contents and are applicable to a wide range of hydrocarbon oils that are completely soluble in chloroform at ambient temperature.5.3 The aromatic hydrogen and aromatic carbon contents determined by this test method can be used to evaluate changes in aromatic contents of hydrocarbon oils due to changes in processing conditions and to develop processing models in which the aromatic content of the hydrocarbon oil is a key processing indicator.1.1 This test method covers the determination of the aromatic hydrogen content (Procedures A and B) and aromatic carbon content (Procedure C) of hydrocarbon oils using high-resolution nuclear magnetic resonance (NMR) spectrometers. Applicable samples include kerosenes, gas oils, mineral oils, lubricating oils, coal liquids, and other distillates that are completely soluble in chloroform at ambient temperature. For pulse Fourier transform (FT) spectrometers, the detection limit is typically 0.1 mol % aromatic hydrogen atoms and 0.5 mol % aromatic carbon atoms. For continuous wave (CW) spectrometers, which are suitable for measuring aromatic hydrogen contents only, the detection limit is considerably higher and typically 0.5 mol % aromatic hydrogen atoms.1.2 The reported units are mole percent aromatic hydrogen atoms and mole percent aromatic carbon atoms.1.3 This test method is not applicable to samples containing more than 1 mass % olefinic or phenolic compounds.1.4 This test method does not cover the determination of the percentage mass of aromatic compounds in oils since NMR signals from both saturated hydrocarbons and aliphatic substituents on aromatic ring compounds appear in the same chemical shift region. For the determination of mass or volume percent aromatics in hydrocarbon oils, chromatographic, or mass spectrometry methods can be used.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.2 and 7.3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Thermal analysis provides a rapid method for determining transition temperatures in HC resins that possess them.5.2 This practice is useful for both quality assurance and research.1.1 This practice covers determination of glass transition temperatures of hydrocarbon (HC) resins by differential scanning calorimetry (DSC).1.2 This practice is applicable to HC resins as defined in Terminology D6640. The normal operating temperature range is from the cryogenic region to approximately 180 °C. The temperature range can be extended.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 Further discussion of glass transition can be found in Test Method D3418, and Test Method E1356.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is useful for both quality control and research.1.1 This practice covers determination of the color stability of a hydrocarbon resin by exposure to a specific temperature for a defined time period in a forced-draft oven.1.2 Color stability is measured by the change in color of the test resin, measured via the yellowness index color scale, in accordance with Practice E313, or the procedure for Gardner Color, Test Method D6166.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Antiwear additives are commonly used in petroleum and hydrocarbon based lubricants to prevent machinery wear by forming a chemical barrier activated by frictional heat. Antiwear additives that are phosphate based can be measured by FT-IR spectroscopy using the phosphate absorption band. Initially, phosphate antiwear additives will decompose and form a protective film by binding to metal surfaces and through oxidative mechanisms, and so a decrease in the level of phosphate antiwear additive relative to that in the new oil is expected during normal machinery operation. Subsequently, significant depletion of phosphate antiwear additives due to oxidation or hydrolysis can occur when the lubricant is subjected to high temperatures and high levels of moisture. This usually occurs prior to the point where the oxidation of the lubricant begins to accelerate, making trending of phosphate antiwear additives a useful indicator of the lubricant’s remaining in-service life. Monitoring of phosphate antiwear additive depletion is therefore an important parameter in determining overall machinery health and should be considered in conjunction with data from other tests such as atomic emission (AE) and atomic absorption (AA) spectroscopy for wear metal analysis (Test Method D5185), physical property tests (Test Methods D445 and D2896) and other FT-IR oil analysis methods for oxidation (Test Method D7414), sulfate by-products (Test Method D7415), and nitration (Test Method D7624), which also assess elements of the oil’s condition, see Refs (1-6).1.1 This test method covers monitoring phosphate antiwear additives in in-service petroleum and hydrocarbon based lubricants such as various types of engine oils, hydraulic oils, and other lubricants that are formulated for protection against wear. Typical phosphate antiwear additives include zinc dialkyldithiophosphates, trialkyl phosphates, and triaryl phosphates.1.2 This test method uses Fourier Transform Infrared (FT-IR) spectrometry for monitoring of phosphate antiwear additive depletion in in-service petroleum and hydrocarbon based lubricants as a result of normal machinery operation. Monitoring the depletion of phosphate antiwear additives in in-service lubricants can indicate unusual wear or severe operating conditions of the machine. This test method is designed as a fast, simple spectroscopic check for monitoring of phosphate antiwear additives in in-service petroleum and hydrocarbon based lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of phosphate antiwear additives in the oil.1.3 Acquisition of FT-IR spectral data for measuring phosphate antiwear additives in in-service oil and lubricant samples is described in Practice D7418. In this test method, measurement and data interpretation parameters for phosphate antiwear additives using both direct trend analysis and differential (spectral subtraction) trend analysis are presented.1.4 This test method is based on trending of spectral changes associated with phosphate antiwear additives in in-service petroleum and hydrocarbon based lubricants. Warnings or alarm limits can be set on the basis of a fixed minimum value for a single measurement or, alternatively, can be based on a rate of change of the response measured, see Ref (1).21.4.1 For direct trend analysis, values are recorded directly from absorption spectra and reported in units of absorbance per 0.1 mm pathlength.1.4.2 For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the absorption spectrum of the reference oil from that of the in-service oil) and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimeter).1.4.3 In either case, maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests or other methods in conjunction with the correlation of changes in the level of phosphate antiwear additives to equipment performance.NOTE 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning, or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.1.5 This test method is for petroleum and hydrocarbon based lubricants and is not applicable for ester based oils, including polyol esters or phosphate esters.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 Exception—The unit for wave numbers is cm-1.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 A large number of compounds, such as aldehydes, ketones, esters, and carboxylic acids, are produced when oils react with atmospheric oxygen. Oxidation is measured using a common FT-IR spectral feature between 1800 cm–1 and 1670 cm–1 caused by the absorption of the carbonyl group present in most oxidation compounds. These oxidation products may lead to increased viscosity (causing oil thickening problems), acidity (causing acidic corrosion), and formation of sludge and varnish (leading to filter plugging, fouling of critical oil clearances and valve friction). Monitoring of oxidation products is therefore an important parameter in determining overall machinery health and should be considered in conjunction with data from other tests such as atomic emission (AE) and atomic absorption (AA) spectroscopy for wear metal analysis (Test Method D5185) and physical property tests (Test Methods D445), base reserve (Test Method D2896 and D4739), acid number tests (Test Methods D664 and D974) and other FT-IR oil analysis methods for nitration (Test Method D7624), sulfate by-products (Test Method D7415), and additive depletion (Test Method D7412), which also assess elements of the oil’s condition, see Refs (1-6).1.1 This test method covers monitoring oxidation in in-service petroleum and hydrocarbon based lubricants such as in diesel crankcase, motor, hydraulic, gear and compressor oils, as well as other types of lubricants that are prone to oxidation.1.2 This test method uses Fourier Transform Infrared (FT-IR) spectrometry for monitoring build-up of oxidation products in in-service petroleum and hydrocarbon based lubricants as a result of normal machinery operation. Petroleum and hydrocarbon based lubricants react with oxygen in the air to form a number of different chemical species, including aldehydes, ketones, esters, and carboxylic acids. This test method is designed as a fast, simple spectroscopic check for monitoring of oxidation in in-service petroleum and hydrocarbon based lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of oxidation in the oil.1.3 Acquisition of FT-IR spectral data for measuring oxidation in in-service oil and lubricant samples is described in Practice D7418. In this test method, measurement and data interpretation parameters for oxidation using both direct trend analysis and differential (spectral subtraction) trend analysis are presented.1.4 This test method is based on trending of spectral changes associated with oxidation of in-service petroleum and hydrocarbon based lubricants. Warnings or alarm limits can be set on the basis of a fixed minimum value for a single measurement or, alternatively, can be based on a rate of change of the response measured, see Ref (1).21.4.1 For direct trend analysis, values are recorded directly from absorption spectra and reported in units of absorbance per 0.1 mm pathlength.1.4.2 For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the absorption spectrum of the reference oil from that of the in-service oil) and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre).1.4.3 In either case, maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests, or other methods in conjunction with the correlation of oxidation changes to equipment performance.NOTE 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning, or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.1.5 This test method is for petroleum and hydrocarbon based lubricants and is not applicable for ester based oils, including polyol esters or phosphate esters.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 Exception—The unit for wave numbers is cm–1.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 An increase in sulfate material can be an indicator of oil degradation caused by oxidation of sulfur in the oil and sulfur in fuel. It can also indicate the breakdown or oxidation of some key additives in the oil such as antiwear and extreme pressure additives as well as blow-by concerns. As oxidized sulfur from blow-by enters the lubricant, it will consume the overbase additive to generate sulfate by-products. Monitoring of sulfate by-products is therefore an important parameter in determining overall machinery health and in determining additive depletion and should be considered in conjunction with data from other tests such as atomic emission (AE) and atomic absorption (AA) spectroscopy for wear metal analysis (Test Method D5185), physical property tests (Test Methods D445 and D2896), base number tests (Test Methods D974 and D4739), and other FT-IR oil analysis methods for nitration (Test Method D7624), oxidation (Test Method D7414), and additive depletion (Test Method D7412), which also assess elements of the oil’s condition, see Refs (1-6).1.1 This test method covers monitoring sulfate by-products in in-service petroleum and hydrocarbon based diesel crankcase engine and motor oils that have a sulfur content of greater than 500 ppm. This test method should not be employed when low-sulfur fuels are used for combustion.1.2 This test method uses Fourier Transform Infrared (FT-IR) spectrometry for monitoring build-up of sulfate by-products in in-service petroleum and hydrocarbon based lubricants as a result of normal machinery operation. Sulfate by-products can result from the introduction of sulfur from combustion or from the oxidation of sulfur-containing base oil additives. This test method is designed as a fast, simple spectroscopic check for monitoring of sulfate by-products in in-service petroleum and hydrocarbon based lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of sulfate by-products in the oil.1.3 Acquisition of FT-IR spectral data for measuring sulfate by-products in in-service oil and lubricant samples is described in Practice D7418. In this test method, measurement and data interpretation parameters for sulfate by-products using both direct trend analysis and differential (spectral subtraction) trend analysis are presented.1.4 This test method is based on trending of spectral changes associated with sulfate by-products of in-service petroleum and hydrocarbon based lubricants. Warnings or alarm limits can be set on the basis of a fixed minimum value for a single measurement or, alternatively, can be based on a rate of change of the response measured, see Ref (1).21.4.1 For direct trend analysis, values are recorded directly from absorption spectra and reported in units of absorbance per 0.1 mm pathlength.1.4.2 For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the absorption spectrum of the reference oil from that of the in-service oil) and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre).1.4.3 In either case, maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests, or other methods in conjunction with the correlation of sulfate by-product changes to equipment performance.NOTE 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning, or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.1.5 This test method is for petroleum and hydrocarbon based lubricants and is not applicable for ester based oils, including polyol esters or phosphate esters.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 Exception—The unit for wave numbers is cm-1.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers high-boiling hydrocarbon solvent for preparing solutions of oil-borne preservatives such as pentachlorophenol and copper naphthenate, and which shall be composed of petroleum distillates and cosolvents, provided that the blended solvent meets the requirements of Section 3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 These test methods are intended to provide a basis for evaluating the time period during which a beam, girder, column, or similar structural assembly, or a nonbearing wall, will continue to perform its intended function when subjected to a controlled, standardized fire exposure.5.1.1 In particular, the selected standard exposure condition simulates the condition of total continuous engulfment of a member or assembly in the luminous flame (fire plume) area of a large free-burning-fluid-hydrocarbon pool fire. The standard fire exposure is basically defined in terms of the total flux incident on the test specimen together with appropriate temperature conditions. Quantitative measurements of the thermal exposure (total heat flux) are required during both furnace calibration and actual testing.5.1.2 It is recognized that the thermodynamic properties of free-burning, hydrocarbon fluid pool fires have not been completely characterized and are variable depending on the size of the fire, the fuel, environmental factors (such as wind conditions), the physical relationship of the structural member to the exposing fire, and other factors. As a result, the exposure specified in these test methods is not necessarily representative of all the conditions that exist in large hydrocarbon pool fires. The specified standard exposure is based upon the best available information and testing technology. It provides a basis for comparing the relative performance of different assemblies under controlled conditions.5.1.3 Any variation to construction or conditions (that is, size, method of assembly, and materials) from that of the tested assembly is capable of substantially changing the performance characteristics of the assembly.5.2 Separate procedures are specified for testing column specimens with and without an applied superimposed load.5.2.1 The procedures for testing loaded columns stipulate that the load shall be applied axially. The applied load is to be the maximum load condition allowed under nationally recognized structural design criteria unless limited design criteria are specified and a corresponding reduced load applied.5.2.2 The procedure for testing unloaded steel column specimens includes temperature limits. These limits are intended to define the temperature above which a steel column with an axially applied design allowable load would fail structurally.5.2.3 The procedure for unloaded specimens also provides for the testing of other than steel columns provided that appropriate acceptance criteria have been established.5.3 Separate procedures are also specified for testing beam assemblies with and without an applied superimposed load.5.3.1 The procedure for testing loaded specimens stipulates that the beam shall be simply supported. Application of restraint against longitudinal thermal expansion depends on the intended use, as specified by the customer. The applied load is intended to be the allowable design load permitted for the beam as determined in accordance with accepted engineering practice.5.3.2 The procedure for testing unloaded beams includes temperature limits for steel. These limits are to define the temperature above which a simply supported, unrestrained beam would fail structurally if subjected to the allowable design load. The procedure for unloaded specimens also provides for the testing of other than steel and reinforced concrete beams provided that appropriate acceptance criteria have been established.5.3.3 It is recognized that beam assemblies that are tested without load will not deflect to the same extent as an identical assembly tested with load. As a result, tests conducted in accordance with the unloaded beam procedure are not intended to reflect the effects of crack formation, dislodgement of applied fire protection materials, and other factors that are influenced by the deflection of the assembly.5.4 A separate procedure is specified for testing the fire-containment capability of a wall/bulkhead/partition, etc. Acceptance criteria include temperature rise of nonfire exposed surface, plus the ability of the wall to prohibit passage of flames or hot gases, or both.5.5 In most cases, the structural assemblies that will be evaluated in accordance with these test methods will be located outdoors and subjected to varying weather conditions that are capable of adversely affecting the fire endurance of the assembly. A program of accelerated weathering followed by fire exposure is described to simulate such exposure.5.6 These test methods provide for quantitative heat flux measurements to support the development of design fires and the use of fire safety engineering models to predict thermal exposure and material performance in a wide range of fire scenarios.1.1 The test methods described in this fire-test-response standard are used for determining the fire-test response of columns, girders, beams or similar structural members, and fire-containment walls, of either homogeneous or composite construction, that are employed in HPI or other facilities subject to large hydrocarbon pool fires.1.2 It is the intent that tests conducted in accordance with these test methods will indicate whether structural members of assemblies, or fire-containment wall assemblies, will continue to perform their intended function during the period of fire exposure. These tests shall not be construed as having determined suitability for use after fire exposure.1.3 These test methods prescribe a standard fire exposure for comparing the relative performance of different structural and fire-containment wall assemblies under controlled laboratory conditions. The application of these test results to predict the performance of actual assemblies when exposed to large pool fires requires a careful engineering evaluation.1.4 These test methods provide for quantitative heat flux measurements during both the control calibration and the actual test. These heat flux measurements are being made to support the development of design fires and the use of fire safety engineering models to predict thermal exposure and material performance in a wide range of fire scenarios.1.5 These test methods are useful for testing other items such as piping, electrical circuits in conduit, floors or decks, and cable trays. Testing of these types of items requires development of appropriate specimen details and end-point or failure criteria. Such failure criteria and test specimen descriptions are not provided in these test methods.1.6 Limitations—These test methods do not provide the following:1.6.1 Full information on the performance of assemblies constructed with components or of dimensions other than those tested.1.6.2 An evaluation of the degree to which the assembly contributes to the fire hazard through the generation of smoke, toxic gases, or other products of combustion.1.6.3 Simulation of fire behavior of joints or connections between structural elements such as beam-to-column connections.1.6.4 Measurement of flame spread over the surface of the test assembly.1.6.5 Procedures for measuring the test performance of other structural shapes (such as vessel skirts), equipment (such as electrical cables, motor-operated valves, etc.), or items subject to large hydrocarbon pool fires, other than those described in 1.1.1.6.6 The erosive effect that the velocities or turbulence, or both, generated in large pool fires has on some fire protection materials.1.6.7 Full information on the performance of assemblies at times less than 5 min because the rise time called out in Section 5 is longer than that of a real fire.1.7 These test methods do not preclude the use of a real fire or any other method of evaluating the performance of structural members and assemblies in simulated fire conditions. Any test method that is demonstrated to comply with Section 5 is acceptable.1.8 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.9 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 The text of this standard references notes and footnotes which provide explanatory information. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 These methods are to be used as a basis for comparison of absorbents in a consistent manner.5.2 These tests are not appropriate for adsorbent materials which are covered in Test Method F726.5.3 These methods are not useful for a comparison of absorbents with adsorbents, even though all absorbents exhibit adsorbent properties. Both types of materials have prime areas of utility.5.4 These methods may not list all the safety and disposal options necessary for safe ultimate disposal of used sorbent material into the environment. Federal, state, and local regulatory rules must be followed.1.1 These test methods cover the development of laboratory test data that describe the performance of absorbent materials (and their retention ability) for use on chemical and light hydrocarbon spills.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (For a specific warning statement see 10.4.)1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the solubility of pentachlorophenol wood preservative in heavy hydrocarbon solvent. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
81 条记录,每页 15 条,当前第 3 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页