3.1 This test method provides a means of assessing the sulfate resistance of mortars made using portland cement, blends of portland cement with pozzolans or slags, and blended hydraulic cements. Test Method C452 is suitable for evaluating portland cements but not blended cements or blends of portland cement with pozzolans or slags.3.2 The standard exposure solution used in this test method, unless otherwise directed, contains 352 moles of Na2SO4 per m3 (50 g/L). Other sulfate concentrations or other sulfates such as MgSO4 may be used to simulate the environmental exposure of interest. Further discussion of these and other technical issues is given in the Appendix.1.1 This test method covers the determination of length change of mortar bars immersed in a sulfate solution. Mortar bars made using mortar described in Test Method C109/C109M are cured until they attain a compressive strength of 20.0 ± 1.0 MPa [3000 ± 150 psi], as measured using cubes made of the same mortar, before the bars are immersed.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the inch-pound units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This method is suitable for determining the total heat of hydration of hydraulic cement at constant temperature at ages up to 7 days to confirm specification compliance.5.2 This method compliments Practice C1679 by providing details of calorimeter equipment, calibration, and operation. Practice C1679 emphasizes interpretation significant events in cement hydration by analysis of time dependent patterns of heat flow, but does not provide the level of detail necessary to give precision test results at specific test ages required for specification compliance.1.1 This test method specifies the apparatus and procedure for determining total heat of hydration of hydraulic cementitious materials at test ages up to 7 days by isothermal conduction calorimetry.1.2 This test method also outputs data on rate of heat of hydration versus time that is useful for other analytical purposes, as covered in Practice C1679.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 Inspection, repair, and construction of ASTs in petroleum service should follow at a minimum the requirements of API 650 and API 653. These standards describe methods for testing the weld quality and structural and hydraulic integrity of new or repaired ASTs. With increasing emphasis on protecting the environment and with environmental issues related to the storing of petroleum materials in ASTs, owners and operators of such tanks may want or need a guide devoted to existing and enhanced methods for evaluating the hydraulic integrity of new or repaired tank bottoms.5.2 The consequences of a tank bottom failure include the economic loss of product, cost of repair or replacing the tank bottom, and exposure to the cost of environmental remediation and potential damage or harm to adjacent lands that may give rise to adverse public relations or regulatory action. In addition, releases of petroleum products introduce potential fire or explosive conditions.5.3 Owners and operators of ASTs or their agents can use this guide to help choose methods of evaluating the hydraulic integrity of their repaired or new tank bottoms. Selection of the methods should be based on regulatory and economic criteria that include operational and cost/benefit considerations.5.4 This guide is intended for use by an individual experienced in repair and construction of ASTs in petroleum service.5.5 This guide is intended for use when repairing or building ASTs. This guide does not address suitability for use or imply useful life of an AST bottom.5.6 This guide is intended to be used in conjunction with and as a supplement to standards provided for hydraulic integrity in API 650 and API 653.5.7 Procedures or methods included here may be supported by a previously completed and documented performance evaluation(s) that may lend itself as valuable results validation.1.1 This guide is intended to provide the reader with a knowledge of construction examination procedures and current technologies that can be used to give an owner or operator of an aboveground storage tank (AST) in petroleum service, relevant information on the hydraulic integrity of a new, repaired, or reconstructed tank bottom prior to return to service. This guide does not pertain to horizontal ASTs, manufacture of tanks using UL 142, or to tanks constructed of concrete or other non-ferrous materials.1.2 The adoption of the methods and technologies presented in this guide are not mandatory, rather they represent options that may be selected to identify the likelihood of product leaking through a new, repaired, or reconstructed tank bottom.1.3 This guide is not intended to suggest or treat any technology in a preferential manner.1.4 The person responsible for applying this guide should be a knowledgeable individual with experience in the design, inspection, construction, or combination thereof, of aboveground storage tanks for use in petroleum service, and should also be certified under the requirements of API 653 when use is related to tank bottom repair.1.5 Refer to API RP 575 for useful information and recommended practices for maintenance and inspection of atmospheric and low pressure stirage tanks.1.6 This guide is written in metric measure units (SI Units) in accordance with requirements of Practice E621. English measure equivalents are in parentheses.1.7 The applicability of this guide to the proposed tank configuration and service conditions should be established prior to use.1.8 This guide complies with ASTM policy for development and subsequent use of a standard.1.9 This guide is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this guide or for additional standards and should be addressed to ASTM International, 100 Barr Harbor Drive, W. Conshohocken, PA 19428.1.10 This guide is not intended for use as a model code, ordinance or regulation.1.11 This guide does not cover every tank bottom inspection procedure that may be properly applied.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车