微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This practice establishes standardized tests for the performance evaluation of sensor-based continuous instruments for ambient air quality measurements. Public and private air monitoring interests have manifested themselves as a driving force for the deployment of air quality sensors and instruments to quantify air pollutant concentrations in communities, around schools, around industrial facilities, and elsewhere. Users of air quality sensors require information on the performance and limitations of these devices so that informed decisions regarding their suitability for various purposes can be determined. This practice describes both laboratory and field tests that provide information on candidate instrument repeatability, sensitivity, linearity, cross-interferences, drift and comparability with more costly instruments typically used by entities such as government agencies. The air quality sensors are first evaluated in a laboratory chamber by comparing their response to a reference instrument and challenging the gas sensors with interferents. The sensors are then deployed outdoors for field testing at two sites with different climates against reference air quality instruments. This practice is intended to be referenced in standards and codes that establish minimum performance quality for sensor-based ambient outdoor air monitoring.5.2 This practice is intended for air quality sensors that measure one or more of the criteria pollutants in ambient air (ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, PM10 and PM2.5) that can be operated in outdoor environments and can log a concentration reading. It is not intended for devices or transducers that require additional enclosures for deployment outdoors or post-processing to convert their output signal into a pollutant concentration reading.5.3 It is anticipated that the main users of this practice will be manufacturers, developers, and distributors of outdoor air quality sensors, air quality agencies, and environmental consultants.1.1 This practice establishes standardized tests for the performance evaluation of sensor-based continuous instruments for ambient outdoor air quality measurements. It describes both laboratory and field tests that provide information on candidate sensor repeatability, sensitivity, linearity, cross-interferences, drift, and comparability against reference instruments.1.2 This practice does not apply to sensors or instruments that remotely measure atmospheric pollutants using open path, lidar, or imaging technology.1.3 The evaluation procedures contained in this practice are for sensors that alone or in combination measure outdoor criteria pollutants in ambient air: particulate matter (PM2.5 and PM10), sulfur dioxide (SO2), ozone (O3), carbon monoxide (CO), or nitrogen dioxide (NO2) at concentrations that are relevant to public health.1.4 Testing is to be performed by a competent entity able to demonstrate that it operates in conformity with internationally accepted test laboratory quality standards such as ISO/IEC 17025.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The objective of this guide is to provide the user with an information base on commercially available instruments and technologies that can be used to measure indoor air formaldehyde concentrations.5.2 This guide is intended as a repository for formaldehyde measurement technologies that other approved ASTM methods can reference to meet ASTM indoor air formaldehyde quantification needs.5.3 This guide does not discuss the equivalency of the technologies presented. Each technology may have positive or negative interferences that are unique to that technology. When using a new method, equivalence with old methods should be demonstrated for each matrix, measuring environment and media (that is, each type of wood for formaldehyde emission testing in chamber environments). This is especially true when the method is intended to generate regulatory compliance data. Demonstrating equivalence or compliance, or both, is beyond the scope of this method. For guidance equivalence see references such as 40 CFR § 136.6 and CEN Guide to the Demonstration of Equivalence of Ambient Air Monitoring Methods (1).51.1 This guide describes analytical methods for determining formaldehyde concentrations in air.1.2 The guide is primarily focused on formaldehyde measurement technologies applicable to indoor (including in vehicle and workplace) air and associated environments (that is, chambers or bags, or both, used for formaldehyde emission testing). The described technologies may be applicable to other environments (ambient outdoor).1.3 This guide reviews a range of commercially available technologies that can be used to measure indoor air formaldehyde concentrations. These technologies typically can measure airborne formaldehyde concentrations with detection limits in the range of 0.04 ppbv (0.05 µg m-3) to 10 ppbv (12 µg m-3). The described technologies are typically applied to research or regulatory applications and not consumer level uses.1.4 This guide describes the principles behind each method and their advantages and limitations.1.5 This guide does not attempt to differentiate between the effectiveness of the methods nor determine equivalence of the methods.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Polycyclic aromatic hydrocarbons (PAH) as defined by this test method are compounds made up of two or more fused aromatic rings.5.2 Several PAH are considered to be probable human carcinogens.5.3 PAH are emitted in the atmosphere primarily through wood or fossil fuel combustion.5.4 Two- and three-ring PAH are typically present in urban air at concentrations ranging from 10 to several hundred nanograms per cubic metre (ng/m3); those with four or more rings are usually found at concentrations of a few ng/m3 or lower.5.5 PAH span a broad spectrum of vapor pressures (for example, from 1.1 × 10–2 kPa for naphthalene to 2 × 10–13 kPa for coronene at 25 °C). Table 1 lists some PAH that are frequently found in ambient air. Those with vapor pressures above about 10–8 kPa will be present in the ambient air substantially distributed between the gas and particulate phases. This test method will permit the collection of both phases. However, particulate-phase PAH will tend to be lost from the particulate filter during sampling due to desorption and volatilization.(A) Many of these compounds sublime.5.5.1 The distribution between phases depends on ambient temperature, humidity, types and concentrations of PAH and particulate matter, and residence time in the air. PAH, especially those having vapor pressures above 10–8 kPa, may vaporize from particulate filters during sampling. Consequently, a back-up vapor trap must be used for efficient sampling.5.6 Separate analyses of the filter and vapor trap will not reflect the original atmospheric phase distributions and should be discouraged.1.1 This test method2 specifies sampling, cleanup, and analysis procedures for the determination of polycyclic aromatic hydrocarbons (PAH) in ambient air.1.2 This test method is designed to collect both gas-phase and particulate-phase PAH and to determine them collectively.1.3 This test method is a high-volume sampling (100 to 250 L/min) method capable of detecting PAH at sub-nanograms per cubic metre (ng/m3) concentrations with sampling volumes up to 350 m3 of air.1.4 This test method has been validated for sampling periods up to 24 h.1.5 Precision and bias under normal conditions can be expected to be ±35 to 50 %.1.6 This test method describes a sampling and analysis procedure for PAH that involves collection from air on a combination fine-particle filter and sorbent trap and subsequent analysis by gas chromatography/mass spectrometry (GC/MS).1.7 The range of this test method is approximately 0.05 to 1000 ng/m3 of air sampled.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See also Section 8 for additional safety precautions.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

The rain spray test described in 8.1 as Method A is based upon Test Method E 331 which is intended for use in the evaluation of exterior windows, curtain walls, and doors. This test method is intended to supplement the water spray test in Practice E 823 that does not include the effects of wind-driven rain. This method includes the use of a pressure differential to enhance the penetration of water into the assembly being tested. This type of pressure differential can occur with many types of solar collector mounting configurations. In the case of solar collectors that form a building element, for example, a roof, this pressure differential will be caused by differences of pressure inside and outside the building. In the case of solar collectors mounted on standoffs or racks, this pressure differential will be caused by positive and negative wind forces acting simultaneously on faces of the collector.Water leakage due to joint expansion can be influenced by several factors, including: the specific collector design and materials used, the test specimen temperature, and the water spray temperature (Note 1), in addition to the pressure differential. The temperature conditions will vary in outdoor exposure. The test temperatures should be selected to be representative of outdoor conditions where the collectors will be used.Note 1—Water spray temperatures are likely to range from 4.5°C to 29.4°C (40 to 85°F).1.1 This test method covers the determination of the resistance of flat plate solar collectors to water penetration when water is applied to their outer surfaces with a static air pressure at the outer surface higher than the pressure at the interior of the collector.1.2 This test method is applicable to any flat plate solar collector.1.3 The proper use of this test method requires a knowledge of the principles of pressure and deflection measurement.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary information is contained in Section 6.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method can be used to measure the rate of oxidation for various grades of manufactured carbon and graphite in standard conditions, and can be used for quality control purposes.5.2 The following conditions are standardized in this test method: size and shape of the graphite specimens; their placement in the vertical furnace with upwards air flow; the method for continuous weight variation measurement using an analytical scale with under-the-scale port; the air flow rate, which must be high enough to ensure that oxidation is not oxygen-starved at the highest temperature used; the initial and final points on the weight loss curve used for calculation of oxidation rate.5.3 This test method also provides kinetic parameters (apparent activation energy and logarithm of pre-exponential factor) for the oxidation reaction, and a standard oxidation temperature. The results characterize the effect of temperature on oxidation rates in air, and the oxidation resistance of machined carbon or graphite specimens with standard size and shape, in the kinetic, or chemically controlled, oxidation regime. This information is useful for discrimination between material grades with different impurity levels, grain size, pore structure, degree of graphitization, or antioxidation treatments, or a combination thereof.5.4 Accurately determined kinetic parameters, like activation energy and logarithm of pre-exponential factor, can be used for prediction of oxidation rates in air as a function of temperature in conditions similar to those of this test method. However, extrapolation of such predictions outside the temperature range where Arrhenius plots are linear (outside the kinetic or chemically controlled regime of oxidation) should be made with extreme caution. In conditions where (1) oxidation rates become controlled by a mechanism other than chemical reactions (such as in-pore diffusion or boundary transport of the oxidant gas), or (2) the oxidant supply rate is not large enough to prevent oxidant starving conditions at high temperature, prediction of oxidation rates using kinetic parameters determined with this test method will produce overestimated results.1.1 This test method recommends a standard procedure for measuring oxidation rates in air of various grades of nuclear graphite and/or manufactured carbon. Following the standard procedure recommended here, one can obtain kinetic parameters that characterize the oxidation resistance in standard conditions of tested materials and that can be used to for materials selection and qualification, and for quality control purposes in the fabrication process.1.2 This test method covers the rate of oxidative weight loss per exposed nominal geometric surface area, or per initial weight of machined test specimens of standard size and shape, or both. The test is valid in the temperature range where the rate of air oxidation of graphite and manufactured carbon is limited by reaction kinetics.1.3 This test method also provides a standard oxidation temperature (as defined in 3.1.7), and the kinetic parameters of the oxidation reaction, namely the apparent activation energy and the logarithm of pre-exponential factor in Arrhenius equation. The kinetic parameters of Arrhenius equation are calculated from the temperature dependence of oxidation rates measured over the temperature range where Arrhenius plots (as defined in 3.1.8) are linear, which is defined as the “kinetic” or “chemical control” oxidation regime. For typical nuclear grade graphite materials it was found that the practical range of testing temperatures is from about 500 °C to 550 °C up to about 700 °C to 750 °C.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The test results allow comparison of sustained air performance of central vacuum cleaners that employ various methods of separating the dirt from the air used to convey the dirt to the central power unit. The results will be expressed as a percentage of the original vacuum performance after loading a prescribed weight of media.4.2 The test results will allow a comparison of emissions by measuring the media emitted during the test and expressing this as an Exhaust Emissions.1.1 This test method is a laboratory test for determining the sustained air performance and Exhaust Emissions of a central vacuum cleaner when tested under laboratory conditions.1.2 This test method is applicable to all central vacuum cleaners with or without any type of internal filter. This test method is intended to help indicate how performance may be affected after multiple times of vacuuming over an extended period of time.1.3 The inch-pound system of units is used in this standard except for weight measurements, which are measured in grams. The values stated in parentheses are given for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
201 条记录,每页 15 条,当前第 14 / 14 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页