微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This classification system covers requirements for plasticized cellulose acetate propionate thermoplastic compounds suitable for injection molding and extrusion. These compounds have a propionyl content less than 48 % and an acetyl content less than 3 % and can contain dyes and pigments. Cellulosic plastic materials, being thermoplastic, are reprocessable and recyclable. This classification system allows for the use of those cellulosic materials, provided that all specific requirements of this classification system are met.1.2 The properties included in this classification system are those required to identify the compositions covered. Other requirements necessary to identify particular characteristics important to specialized applications are specified by using the suffixes as given in Section 5.1.3 This classification system and subsequent line call out specification are intended to provide a means of calling out plastic materials used in the fabrication of end items or parts. It is not intended for the selection of materials. Material selection can be made by those having expertise in the plastic field only after careful consideration of the design and performance required of the part, environment to which it will be exposed, fabrication process to be employed, costs involved, and inherent properties of the material other than those covered by this classification system.1.4 The values stated in SI units are to be regarded as standard.1.5 The following safety hazards caveat pertains only to the test method portion, Section 11, of this classification system. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers face glazing or bedding compounds, or both, used on exterior steel, aluminum, and other metal sash. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method describes the determination of the tack-free time property of caulking compounds and sealants. The method is applicable to both gun and knife grades. Requirements for the apparatus including the cabinet or room, brass sheet, template, steel sheets, plastic strips (polyethylene strips), spatula, and knife blade are given. Methyl ethyl ketone, ethylene dichloride, or similar solvent shall be used. The test specimen shall be sampled from a previously unopened container and shall be thoroughly mixed before using. The method of preparation and conditioning of the test specimen, and the test procedure are detailed. No caulking compound or sealant shall adhere to the polyethylene strip in the test specimen.1.1 This test method describes the determination of the tack-free time property of caulking compounds and sealants. This test method is applicable to both gun and knife grades.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 The committee with jurisdiction over this standard is not aware of any comparable standard published by other organizations.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This test method covers the procedure for determining the crazing effect caused by a liquid or semi-liquid on transparent three types of acrylic plastic materials under bending stress. Cast acrylic materials from Types A and B should be annealed according to specifications while the stretched acrylic materials of Type C should not be annealed. All test specimens should be machined from polished acrylic plastic sheets and should have smooth machined surfaces.1.1 This test method covers determination of the crazing effect that a liquid or semi-liquid test compound will have on transparent acrylic plastic material that is under bending stress.1.2 Three types of acrylic material are covered. One, two, or all of the materials shall be used in the test, as specified by the procuring agency. When not specified otherwise, all three types of acrylic shall be used in the test.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The determination of class group composition of automotive spark-ignition fuels as well as quantification of various individual species such as oxygenates and aromatics in automotive fuels is useful for evaluating quality and expected performance, as well as compliance with various governmental regulations.1.1 This test method is a standard procedure for the determination in percent mass or percent volume of hydrocarbon group types (paraffins, isoparaffins, olefins, naphthenes, aromatics), methanol, ethanol, benzene, toluene, ethylbenzene, xylenes, naphthalene, and methylnaphthalenes in automotive spark-ignition engine fuels using gas chromatography and vacuum ultraviolet detection (GC-VUV).1.1.1 The concentration ranges for which precision has been determined are as follows:Property Units Applicable RangeParaffins % Volume 3.572 to 23.105Isoparaffins % Volume 22.697 to 71.993Olefins % Volume 0.011 to 44.002Olefins % Mass 0.027 to 41.954Naphthenes % Volume 0.606 to 18.416Aromatics % Volume 14.743 to 58.124Methanol % Volume 0.063 to 3.426Ethanol % Mass 0.042 to 15.991Benzene % Volume 0.09 to 1.091Toluene % Volume 0.698 to 31.377Ethylbenzene % Volume 0.5 to 3.175Xylenes % Volume 3.037 to 18.955Naphthalene % Volume 0.019 to 0.779Methylnaphthalenes % Volume 0.21 to 1.4841.1.2 This test method may be applicable to other concentration ranges, to other properties, or to other hydrocarbon streams, however precision has not been determined.1.2 Individual hydrocarbon components are typically not baseline-separated by the procedure described in this test method, that is, some components will coelute. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.3 While this test method reports percent mass and percent volume for several specific components that may be present in automotive spark-ignition engine fuel, it does not attempt to speciate all possible components that may occur in automotive spark-ignition engine fuel. In particular, this test method is not intended as a type of detailed hydrocarbon analysis (DHA).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See specific hazard statements in subsection 8.4 and Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM D4617-03 Standard Classification System for Phenolic Compounds (PF) (Withdrawn 2012) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

This classification system covers the different classes, filler types, and grades of phenolic compounds suitable for compression, transfer, or injection molding, or a combination thereof. It is intended to be a means of calling out plastic materials used in the fabrication of end items or parts, not for the selection of materials. The properties included here are those required to identify the compositions covered. There may be other requirements necessary to identify particular characteristics important to specialized applications, and shall be agreed upon between the user and the supplier. Sampled specimens shall be tested on and conform accordingly to the following physical property requirements: specific gravity; water absorption; Izod impact strength; flexural strength; deflection temperature; tensile strength; and compressive strength.1.1 This classification system covers phenolic compounds suitable for compression, transfer, or injection molding, or a combination thereof.1.2 This classification system is intended to be a means of calling out plastic materials used in the fabrication of end items or parts. It is not intended for the selection of materials. Material selection should be made by those having expertise in the plastics field after careful consideration of the design and the performance required of the part, the environment to which it will be exposed, the fabrication process to be employed, the inherent properties of the material other than those covered by this classification system, and the economics.1.3 The properties included in this classification system are those required to identify the compositions covered. There may be other requirements necessary to identify particular characteristics important to specialized applications. These will be agreed upon between the user and the supplier, by using the suffixes specified in Section5.1.4 The values stated in SI units are to be regarded as the standard.1.5 The following precautionary caveat pertains only to the test method portion, Section 13 of this classification system: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Note 1—ISO 800-1992(E) is similar but not equivalent to this classification system. Product classification and characterization are not the same.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This specification is a revision of STD MIL-M-14H, Specification for Molding Compound, Thermosetting, retaining the MIL-M-14H material designations and property requirements while conforming to ASTM form and style. It is intended for qualification and batch acceptance for materials used by government and industry, and is intended as a direct replacement for MIL-M-14H.AbstractThis specification covers the basic properties of thermoset molding plastic compounds and the test methods used to establish the properties. The plastic compounds shall be a resin, cellulose-filled or mineral/glass-filled phenolic, melamine, polyester, diallyl iso-phthalate, diallyl ortho-phthalate, silicone, or epoxy. Standard test specimens shall be in the as-received condition or shall be conditioned before testing by humidity, immersion, or temperature conditioning. The specimens shall undergo mechanical or physical qualification tests which shall conform to the following properties: compressive strength; dimensional stability; flexural strength; heat deflection temperature; heat resistance; impact strength; tensile strength; and water absorption. Electrical qualification tests shall be conducted; wherein, the specimens shall comply with the following requirements: arc resistance; dielectric breakdown; dielectric constant; dielectric strength; dissipation factor; surface resistance; comparative track index; volume resistance; and water extract conductance. Tests for combustion qualification shall also be performed to determine the flame resistance ignition time, burning time, flammability, and toxicity requirements. Batch acceptance tests shall be conducted as well to ensure the quality conformance of the specimens.1.1 This specification covers the basic properties of thermoset molding compounds and the test methods used to establish the properties.1.2 Classification—Molding thermosetting plastic compounds shall be of the following resins and are covered by the individual specification sheets (see 5.1 and Annex A1 – Annex A8).ResinPhenolic, cellulose filledPhenolic, mineral/glass filledMelaminePolyesterDiallyl iso-phthalateDiallyl ortho-phthalateSiliconeEpoxyNOTE 1: There is no known ISO equivalent to this standard.1.3 Order of Precedence—In the event of a conflict between the text of this specification and the references cited in Section 2 (except for related specification sheets), the text of this specification takes precedence. Nothing in this specification, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.1.4 The values stated in SI units are to be considered standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method provides an accelerated method for determining the stability of plasticized PVC compounds with respect to plasticizer compatibility under humid conditions.5.2 The temperatures and humidity employed in this test can represent actual use conditions, but are intended primarily for rating materials.1.1 This test method defines the conditions for the exposure and qualitative evaluation of plasticized poly(vinyl chloride) (PVC) compounds for plasticizer compatibility under humid conditions. Change in appearance is used for judging compatibility.1.2 The text of this test method references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this test method.1.3 The values stated in SI units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this test method.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Many regulators, industrial processes, and other stakeholders require determination of NMOC in atmospheres.5.2 Accurate measurements of ambient NMOC concentrations are critical in devising air pollution control strategies and in assessing control effectiveness because NMOCs are primary precursors of atmospheric ozone and other oxidants (7, 8).5.2.1 The NMOC concentrations typically found at urban sites may range up to 1 ppm C to 3 ppm C or higher. In order to determine transport of precursors into an area monitoring site, measurement of NMOC upwind of the site may be necessary. Rural NMOC concentrations originating from areas free from NMOC sources are likely to be less than a few tenths of 1 ppm C.5.3 Conventional test methods based upon gas chromatography and qualitative and quantitative species evaluation are relatively time consuming, sometimes difficult and expensive in staff time and resources, and are not needed when only a measurement of NMOC is desired. The test method described requires only a simple, cryogenic pre-concentration procedure followed by direct detection with an FID. This test method provides a sensitive and accurate measurement of ambient total NMOC concentrations where speciated data are not required. Typical uses of this standard test method are as follows.5.4 An application of the test method is the monitoring of the cleanliness of canisters.5.5 Another use of the test method is the screening of canister samples prior to analysis.5.6 Collection of ambient air samples in pressurized canisters provides the following advantages:5.6.1 Convenient collection of integrated ambient samples over a specific time period,5.6.2 Capability of remote sampling with subsequent central laboratory analysis,5.6.3 Ability to ship and store samples, if necessary,5.6.4 Unattended sample collection,5.6.5 Analysis of samples from multiple sites with one analytical system,5.6.6 Collection of replicate samples for assessment of measurement precision, and5.6.7 Specific hydrocarbon analysis can be performed with the same sample system.1.1 This test method2 presents a procedure for sampling and determination of non-methane organic compounds (NMOC) in ambient, indoor, or workplace atmospheres.1.2 This test method describes the collection of integrated whole air samples in silanized or other passivated stainless steel canisters, and their subsequent laboratory analysis.1.2.1 This test method describes a procedure for sampling in canisters at final pressures above atmospheric pressure (pressurized sampling).1.3 This test method employs a cryogenic trapping procedure for concentration of the NMOC prior to analysis.1.4 This test method describes the determination of the NMOC by the flame ionization detection (FID), without the use of gas chromatographic columns and other procedures necessary for species separation.1.5 The range of this test method is from 20 ppb C to 10 000 ppb C (1, 2).31.6 This test method has a larger uncertainty for some halogenated or oxygenated hydrocarbons than for simple hydrocarbons or aromatic compounds. This is especially true if there are high concentrations of chlorocarbons or chlorofluorocarbons present.1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The method of powder dispersion in a liquid has a significant effect on the results of a particle size distribution analysis. The analysis will show a too-coarse, unstable, or nonrepeatable distribution if the powder has not been dispersed adequately. It is therefore important that parties wishing to compare their analyses use the same dispersion technique.4.2 This guide provides ways of deriving dispersion techniques for a range of metal powders and compounds. It should be used by all parties performing liquid-dispersed particle size analysis of all of the materials covered by this guide (see 1.1, 1.2, and 4.1).4.3 Table 1 provides some dispersion procedures that have been found useful and consistent for the particular materials listed there. These are only suggested dispersion procedures; the procedures and dispersion checks of 7.1.2 – 7.1.4, or the more detailed method development procedures of Guide E3340, should still be used to verify adequate dispersion for each particular material and particle size range.(A) Stated ultrasonic power and duration times are given as an indication only. Specific conditions should be sought for the particular system in question during the method development phase.(B) Tween 21, chemically known as polyoxyethylene6 sorbitan monolaurate, is manufactured by Croda International PLC, and is available from various chemical suppliers.(C) Three to five drops Tween 21 in 30 to 50 mL water.4.4 This guide should be used in the preparation of powders for use in Test Methods B761 and B822 and other procedures that analyze metal powder particle size distributions in liquid-dispersed systems.1.1 This guide covers the dispersion in liquids of metal powders and related compounds for subsequent use in particle size analysis instruments. This guide describes a general procedure for achieving and determining dispersion; it also lists procedures that have been found useful for certain materials.1.2 This guide does not include specific procedures for dry dispersion of particulate materials. It only indicates when liquid dispersion is not appropriate and dry dispersion must be utilized (see 7.1.2.1). For guidance on development of methods of dry dispersion, see Guide E3340.1.3 This guide is limited to metal powders and related metal compounds. However, the general procedure described herein may be used, with caution as to its significance, for other particulate materials, such as ceramics, pigments, minerals, etc.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Reported particle size measurement is a function of both the actual particle dimension and shape factor as well as the particular physical or chemical properties being measured. Caution is required when comparing data from instruments operating on different physical or chemical parameters or with different particle size measurement ranges. Sample acquisition, handling, and preparation can also affect reported particle size results.5.1.1 It is important to recognize that the results obtained by this test method, or any other method for particle size determination using different physical principles, may disagree. The results are strongly influenced by the physical principles employed by each method of particle size analysis. The results of any particle sizing method should be used only in a relative sense; they should not be regarded as absolute when comparing results obtained by other methods.5.2 Light scattering theory has been available for many years for use in the determination of particle size. Several manufacturers of testing equipment now have units based on these principles. Although each type of testing equipment uses the same basic principles for light scattering as a function of particle size, different assumptions pertinent to application of the theory, and different models for converting light measurements to particle size, may lead to different results for each instrument. Therefore, the use of this test method cannot guarantee directly comparable results from different types of instruments.5.3 Knowledge of the particle size distribution of metal powders is useful in predicting the powder-processing behavior and ultimate performance of powder metallurgy parts. Particle size distribution is related closely to the flowability, moldability, compressibility, and die-filling characteristics of a powder, as well as to the final structure and properties of finished powder metallurgy (P/M) parts.5.4 This test method is useful to both suppliers and users of powders in determining the particle size distributions for product specifications, manufacturing control, development, and research.5.5 This test method may be used to obtain data for comparison between lots of the same material or for establishing conformance, as in acceptance testing.1.1 This test method covers the determination of the particle size distribution by light scattering, reported as volume percent, of particulate materials including metals and compounds.1.2 This test method applies to analyses with both aqueous and nonaqueous dispersions. In addition, analysis can be performed with a gaseous dispersion for materials that are hygroscopic or react with a liquid carrier.1.3 This test method is applicable to the measurement of particulate materials in the range of 0.4 to 2000 μm, or a subset of that range, as applicable to the particle size distribution being measured.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
131 条记录,每页 15 条,当前第 9 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页