微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 These test methods were developed to measure the types and amounts of aromatics in mineral spirits to determine compliance with air pollution regulations that restrict the aromatic content of solvents. They have been demonstrated to be workable and to produce accurate results. However, due to the sensitivity of the tests to operating variables, some laboratories having limited experience with gas chromatographic analyses of hydrocarbons may experience difficulty in performing the tests.1.1 These test methods cover the determination of ethylbenzene and total eight-carbon (C8) and heavier aromatics in the concentration range from 0.1 to 30 % in mineral spirits having a distillation range from 149 to 210 °C (300 to 410 °F) as determined by Test Method D86. The procedures permit the identification and calculation of concentrations of aromatic components to 0.1 volume %.1.2 It is recognized by analytical chemists that a single column gas chromatography analysis of an unknown sample is risky. In such cases, multiple and different analytical techniques must be used for absolutely positive identification, for example, several different gas chromatography columns, gas chromatography/mass spectrometer, or gas chromatography/infrared, etc. In these test methods the material is known and is clearly defined.1.3 Oxygenated compounds, if present, may interfere and cause erroneous results. Such oxygenated compounds are not normally present in mineral spirits.1.4 Three test methods are covered as follows:1.4.1 Test Method A, measurement of ethylbenzene content, C8 plus higher aromatics (except ethylbenzene), and total aromatics by means of a single packed column gas chromatographic analysis.1.4.2 Test Method B, measurement of ethylbenzene content by means of a rapid packed column gas chromatographic analysis.1.4.3 Test Method C, measurement of ethylbenzene content, C8 plus higher aromatics (except ethylbenzene) and total aromatics by means of a capillary column gas chromatographic analysis.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 For purposes of determining conformance of an observed or a calculated value using this test method to relevant specifications, test result(s) shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.1.7 For hazard information and guidance, see the supplier’s Material Safety Data Sheet.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D4975-14 Standard Test Methods for Single-Filament Tire Bead Wire Made from Steel (Withdrawn 2023) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

5.1 The procedures for the determination of properties of single-filament bead wire made from steel are considered satisfactory for acceptance testing of commercial shipments of this product because the procedures are the best available and have been used extensively in the trade.5.1.1 In case of a dispute arising from differences in reported test results when using these test methods for acceptance testing of commercial shipments, the purchaser and supplier should conduct comparative test to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens then should be randomly assigned in equal number to each laboratory for testing. The average results from the two laboratories should be compared using Student's t-test for unpaired data and an acceptable probability level chosen by the two parties before testing is begun. If a bias is found, either its cause must be determined and corrected or the purchaser and the supplier must agree to interpret future test results with consideration to the known bias.1.1 These test methods cover testing of single-filament steel wires that are components of tire beads used in the manufacture of pneumatic tires. By agreement, these test methods may be applied to similar filaments used for reinforcing other rubber products.1.2 These test methods describe test procedures only and do not establish specifications and tolerances.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 These test methods cover the determination of the mechanical properties listed below:  Property   Section   Breaking Force (Strength)  7 – 13  Yield Strength  7 – 13  Elongation  7 – 13  Torsion Resistance 14 – 20  Diameter (Gage) 21 – 271.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Sensitivity and vulnerability methods can be applied to a variety of hydrogeologic settings, whether or not they contain specifically identified aquifers. However, some methods are best suited to assess groundwater within aquifers, while others assess groundwater above aquifers or groundwater in areas where aquifers have not been identified.4.1.1 Intergranular media systems, including alluvium and terrace deposits, valley fill aquifers, glacial outwash, sandstones, and unconsolidated coastal plain sediments are characterized by intergranular flow, and thus generally exhibit slower and more predictable groundwater velocities and directions than in fractured media. Such settings are amenable to assessment by the methods described in this guide. Hydrologic settings dominated by fracture flow or flow in solution openings are generally not amenable to such assessments, and application of these techniques to such settings may provide misleading or totally erroneous results.4.2 The methods discussed in this guide provide users with information for making land- and water-use management decisions based on the relative sensitivity or vulnerability of underlying groundwater or aquifers to contamination. Most sensitivity and vulnerability assessment methods are designed to evaluate broad regional areas for purposes of assisting federal, state, and local officials to identify and prioritize areas where more detailed assessments are warranted, to design and locate monitoring systems, and to help develop optimum groundwater management, use and protection policies. However, some of these methods are independent of the size of the area evaluated and, therefore, can be used to evaluate the aquifer sensitivity and vulnerability of a specific area.4.3 Many methods for assessing groundwater sensitivity and vulnerability require information on soils, and for some types of potential groundwater contaminants, soil is the most important factor affecting contaminant movement and attenuation from the land surface to groundwater. The relatively large surface area of the clay-size particles in most soils and the soils' content of organic matter provide sites for the retardation and degradation of contaminants. Unfortunately, there are significant differences in the definition of soil between the sciences of hydrogeology, engineering, and agronomy. For the purposes of this guide, soils are considered to be those unconsolidated organic materials and solid mineral particles that have been derived from weathering and are characterized by significant biological activity. These typically include unconsolidated materials that occur to a depth of 2 to 3 m or more.4.3.1 In many areas, significant thicknesses of unconsolidated materials may occur below the soil. Retardation, degradation, and other chemical attenuation processes are typically less than in the upper soil horizons. These underlying materials may be the result of depositional processes or may have formed in place by long-term weathering processes with only limited biological activity. Therefore, when compiling the data required for assessing groundwater sensitivity and vulnerability, it is important to distinguish between the soil zone and the underlying sediments and to recognize that the two zones have significantly different hydraulic and attenuation properties.1.1 This guide covers information needed to select one or more methods for assessing the sensitivity of groundwater or aquifers and the vulnerability of groundwater or aquifers to water-quality degradation by specific contaminants.1.2 This guide may not be all-inclusive; it offers a series of options and does not specify a course of action. It should not be used as the sole criterion or basis of comparison, and does not replace professional judgment.1.3 This guide is to be used for evaluating sensitivity and vulnerability methods for purposes of land-use management, water-use management, groundwater protection, government regulation, and education. This guide incorporates descriptions of general classes of methods and selected examples within these classes but does not advocate a particular method.1.4 Limitations—The utility and reliability of the methods described in this guide depend on the availability, nature, and quality of the data used for the assessment; the skill, knowledge, and judgment of the individuals selecting the method; the size of the site or region under investigation; and the intended scale of resulting map products. Because these methods are being continually developed and modified, the results should be used with caution. These techniques, whether or not they provide a specific numeric value, provide a relative ranking and assessment of sensitivity or vulnerability. However, a relatively low sensitivity or vulnerability for an area does not preclude the possibility of contamination, nor does a high sensitivity or vulnerability necessarily mean that groundwater or an aquifer is contaminated.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.6.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.8 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 These test methods for the chemical analysis of metals and alloys are primarily intended as referee methods to test such materials for compliance with compositional specifications, particularly those under the jurisdiction of Committee B02 on Nonferrous Metals and Alloys. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory under appropriate quality control practices such as those described in Guide E882.1.1 These test methods describe the chemical analysis of nickel, cobalt, and high-temperature alloys having chemical compositions within the following limits:  Element Composition Range, %    Aluminum   0.005 to 7.00      Beryllium   0.001 to 0.05      Boron   0.001 to 1.00      Calcium   0.002 to 0.05      Carbon   0.001 to 1.10      Chromium   0.10 to 33.00      Cobalt   0.10 to 75.00      Copper   0.01 to 35.00      Iron   0.01 to 50.00      Lead   0.001 to 0.01      Magnesium   0.001 to 0.05      Manganese   0.01 to 3.0      Molybdenum   0.01 to 30.0      Niobium (Columbium)   0.01 to 6.0       Nickel   0.10 to 98.0      Nitrogen   0.001 to 0.20      Phosphorus   0.002 to 0.08      Sulfur   0.002 to 0.10      Silicon   0.01 to 5.00      Tantalum   0.005 to 1.00      Tin   0.002 to 0.10      Titanium   0.01 to 5.00      Tungsten   0.01 to 18.00      Vanadium   0.01 to 3.25      Zinc   0.001 to 0.01      Zirconium   0.01 to 2.50    1.2 The test methods in this standard are contained in the sections indicated as follows:Aluminum, Total by the 8-Quinolinol Gravimetric Method (0.20 % to 7.00 %) 53 to 60Chromium by the Atomic Absorption Spectrometry Method (0.018 % to 1.00 %) 91 to 100Chromium by the Peroxydisulfate Oxidation—Titration Method (0.10 % to 33.00 %) 101 to 109Cobalt by the Ion-Exchange-Potentiometric Titration Method (2 % to 75 %) 25 to 32Cobalt by the Nitroso-R-Salt Spectrophotometric Method (0.10 % to 5.0 %) 33 to 42Copper by Neocuproine Spectrophotometric Method (0.010 % to 10.00 %) 43 to 52Iron by the Silver Reduction Titrimetric Method (1.0 % to 50.0 %) 118 to 125Manganese by the Metaperiodate Spectrophotometric Method (0.05 % to 2.00 %) 8 to 17Molybdenum by the Ion Exchange—8-Hydroxyquinoline  Gravimetric Method (1.5 % to 30 %) 110 to 117Molybdenum by the Thiocyanate Spectrophotometric Method (0.01 % to 1.50 %) 79 to 90Nickel by the Dimethylglyoxime Gravimetric Method (0.1 % to 84.0 %) 61 to 68Niobium by the Ion Exchange—Cupferron Gravimetric Method (0.5 % to 6.0 %) 126 to 133Silicon by the Gravimetric Method (0.05 % to 5.00 %) 18 to 24Tantalum by the Ion Exchange—Pyrogallol Spectrophotometric Method (0.03 % to 1.0 %) 134 to 142Tin by the Solvent Extraction-Atomic Absorption Spectrometry Method (0.002 % to 0.10 %) 69 to 781.3 Other test methods applicable to the analysis of nickel alloys that may be used in lieu of or in addition to this method are E1019, E1834, E1835, E1917, E1938, E2465, E2594, E2823.1.4 Some of the composition ranges given in 1.1 are too broad to be covered by a single method, and therefore, these test methods contain multiple methods for some elements. The user must select the proper test method by matching the information given in the scope and interference sections of each test method with the composition of the alloy to be analyzed.1.5 Units—The values stated in SI units are regarded as standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific caution and hazard statements are given in Section 7 and in 13.4, 15.1.1, 15.1.2, 21.2, 22.3, 57.3, 84.2, 114.5, 115.14, 130.4, 130.5, 138.5, and 138.6.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

6.1 This test method is useful for research and development, quality assurance, regulatory compliance and specification-based acceptance.6.2 The kinetic parameters determined by this method may be used to calculate thermal hazard figures-of-merit according to Practice E1231.1.1 This test method describes the determination of the kinetic parameters of Arrhenius activation energy and pre-exponential factor using the Kissinger variable heating rate iso-conversion method (1, 2)2 and activation energy and reaction order by the Farjas method (3) for thermally unstable materials. The test method is applicable to the temperature range from 300 K to 900 K (27 °C to 627 °C).1.2 Both nth order and accelerating reactions are addressed by this method over the range of 0.5 < n < 4 and 1 < p < 4 where n is the nth order reaction order and p is the Avrami reaction order (4). Reaction orders n and p are determined by the Farjas method (3).1.3 This test method uses the same experimental conditions as Test Method E698. The Flynn/Wall/Ozawa data treatment of Test Method E698 may be simultaneously applied to these experimental results.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The standard sample is available to producers and users of RDF as a method for determining the weight percent of nitrogen in the analysis samples.5.2 Nitrogen is part of the ultimate analysis and can be used for calculation of combustion parameters.1.1 These test methods cover the determination of total Kjeldahl nitrogen in prepared analysis samples of solid forms of refuse-derived fuel (RDF). The procedures measure free ammonia or ammonia formed from the conversion of organic nitrogenous compounds such as amino acids and proteins. However, the procedures may not convert the nitrogenous compounds of some wastes to ammonia. Examples of such compounds that may not be measured are nitro compounds, hydrozones, oxines, nitrates, semicarbazones, pyridines, and some refractory tertiary amines.1.2 Two alternatives are described for the final determination of the ammonia, the Kjeldahl-Gunning Test Method and the Acid-Titration Test Method.1.3 The analytical data from these test methods are to be reported as part of the ultimate analysis where ultimate analysis is requested.1.4 These test methods may be applicable to any waste material from which a laboratory analysis sample can be prepared.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 8.4.1 and Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 These test methods can be used to ensure that the chemical composition of the glass meets the compositional specification required for the finished glass product.3.2 These test methods do not preclude the use of other methods that yield results within permissible variations. In any case, the analyst should verify the procedure and technique employed by means of a National Institute of Standards and Technology (NIST) standard reference material having a component comparable with that of the material under test. A list of standard reference materials is given in the NIST Special Publication 260,3 current edition.3.3 Typical examples of products manufactured using soda-lime silicate glass are containers, tableware, and flat glass.3.4 Typical examples of products manufactured using borosilicate glass are bakeware, labware, and fiberglass.3.5 Typical examples of products manufactured using fluoride opal glass are containers, tableware, and decorative glassware.1.1 These test methods cover the quantitative chemical analysis of soda-lime and borosilicate glass compositions for both referee and routine analysis. This would be for the usual constituents present in glasses of the following types: (1) soda-lime silicate glass, (2) soda-lime fluoride opal glass, and (3) borosilicate glass. The following common oxides, when present in concentrations greater than indicated, are known to interfere with some of the determinations in this method: 2 % barium oxide (BaO), 0.2 % phosphorous pentoxide (P2O5), 0.05 % zinc oxide (ZnO), 0.05 % antimony oxide (Sb2O3), 0.05 % lead oxide (PbO).1.2 The analytical procedures, divided into two general groups, those for referee analysis, and those for routine analysis, appear in the following order:    SectionsProcedures for Referee Analysis:    Silica 10  BaO, R2O2 (Al2O3 + P2O5), CaO, and MgO 11 – 15  Fe2O3, TiO2, ZrO2 by Photometry and Al2O3 by Com-     plexiometric Titration 16 – 22  Cr2O3 by Volumetric and Photometric Methods 23 – 25  MnO by the Periodate Oxidation Method 26 – 29  Na2O by the Zinc Uranyl Acetate Method and K2O by     the Tetraphenylborate Method 30 – 33  SO3 (Total Sulfur) 34 – 35  As2O3 by Volumetric Method 36 – 40     Procedures for Routine Analysis:    Silica by the Single Dehydration Method 42 – 44  Al2O3, CaO, and MgO by Complexiometric Titration,     and BaO, Na2O, and K2O by Gravimetric Method 45 – 51  BaO, Al2O3, CaO, and MgO by Atomic Absorption; and     Na2O and K2O by Flame Emission Spectroscopy 52 – 59  SO3 (Total Sulfur) 60  B2O3 61 – 62  Fluorine by Pyrohydrolysis Separation and Specific Ion     Electrode Measurement 63 – 66  P2O5 by the Molybdo-Vanadate Method 67 – 70  Colorimetric Determination of Ferrous Iron Using 1,10     Phenanthroline 71 – 76     1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 These test methods provide accurate and reliable analytical procedures to determine the chemical constituents of limestone, quicklime, and hydrated lime (see Note 1). The percentages of specific constituents which determine a material's quality or fitness for use are of significance depending upon the purpose or end use of the material. Results obtained may be used in relation to specification requirements.4.2 Because quicklime and hydrated lime quickly absorb water and carbon dioxide from the air, precision and bias are extremely dependent upon precautions taken during sample preparation and analysis to minimize excessive exposure to ambient conditions.NOTE 1: These test methods can be applied to other calcareous materials if provisions are made to compensate for known interferences.1.1 These test methods cover the chemical analysis of high-calcium and dolomitic limestone, quicklime, and hydrated lime. These test methods are classified as either standard (preferred) or alternative (optional).1.2 The standard test methods are those that employ classical gravimetric or volumetric analytical procedures and are typically those required for referee analyses where chemical specification requirements are an essential part of contractual agreement between buyer and seller.1.3 Alternative or optional test methods are provided for those who wish to use procedures shorter or more convenient than the standard methods for the routine determinations of certain constituents. Optional test methods may sometimes be preferred to the standard test methods, but frequently the use of modern and expensive instrumentation is indicated which may not be accessible to everyone. Therefore, the use of these test methods must be left to the discretion of each laboratory.1.4 The analytical procedures appear in the following order:  Section     Aluminum Oxide  15     Available Lime Index  28     Calcium and Magnesium Oxide:      Alternative EDTA Titration Method  31     Calcium Carbonate Equivalent  33     Calcium Oxide:      Gravimetric Method  16      Volumetric Method  17     Carbon Dioxide by Standard Method  22     Combined Oxides of Iron and Aluminum  12     Ferrous Iron  Appendix X5     Free Calcium Oxide  Appendix X6     Free Moisture in Hydrated Lime  21     Free Moisture in Limestone  20     Free Silica  29     Insoluble Matter Including Silicon Dioxide:      Standard Method   8      Optional Perchloric Acid Method   9     Insoluble Matter Other Than Silicon Dioxide  11     Loss on Ignition  19     Magnesium Oxide  18     Manganese:      Bismuthate Method  Appendix X4      Periodate (Photometric) Method  27     pH Determination of Alkaline Earth Solutions  34     Phosphorus:      Titrimetric Method  Appendix X3      Molybdovanadate Method  26     Silicon Dioxide  10     Strontium Oxide  Appendix X2     Sulfur Trioxide  23     Total Carbon:      Direct Combustion-Thermal Conductivity Cell      Method 32     Total Carbon and Sulfur:      Combustion/Infrared Detection Method  35     Total Iron:      Standard Method, Potassium Dichromate      Titration  13      Potassium Permanganate Titration Method  Appendix X1      Ortho-Phenanthroline, Photometric Method  14     Total Sulfur:      Sodium Carbonate Fusion  24      Combustion-Iodate Titration Method  25      Unhydrated Oxides  301.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 9.3, 10.2.1, 18.4.3, 31.6.4.2, X2.3.1, and X5.4.1.1.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 The useful life of photovoltaic modules may depend on their ability to withstand repeated temperature cycling with varying amounts of moisture in the air. These test methods provide procedures for simulating the effects of cyclic temperature and humidity environments. An extended duration damp heat procedure is provided to simulate the effects of long term exposure to high humidity.4.2 The durations of the individual environmental tests are specified by use of this test method; however, commonly used durations are 50 and 200 thermal cycles, 10 humidity-freeze cycles, and 1000 h of damp heat exposure, as specified by module qualification standards such as IEC 61215 and IEC 61646. Longer durations can also be specified for extended duration module stress testing.4.3 Mounting—Test modules are mounted so that they are electrically isolated from each other, and in such a manner to allow free air circulation around the front and back surfaces of the modules.4.4 Current Biasing: 4.4.1 During the thermal cycling procedure, test modules are operated without illumination and with a forward-bias current equal to the maximum power point current at standard reporting conditions (SRC, see Test Methods E1036) flowing through the module circuitry.4.4.2 The current biasing is intended to stress the module interconnections and solder bonds in ways similar to those that are believed to be responsible for fill-factor degradation in field-deployed modules.4.5 Effects of Test Procedures—Data generated using these test methods may be used to evaluate and compare the effects of simulated environment on test specimens. These test methods require determination of both visible effects and electrical performance effects.4.5.1 Effects on modules may vary from none to significant changes. Some physical changes in the module may be visible when there are no apparent electrical changes in the module. Similarly, electrical changes may occur with no visible changes in the module.4.5.2 All conditions of measurement, effects of cycling, and any deviations from this test method must be described in the report so that an assessment of their significance can be made.4.6 Sequencing—If these test methods are performed as part of a combined sequence with other environmental or non-environmental tests, the results of the final electrical tests (6.2) and visual inspection (6.3) determined at the end of one test may be used as the initial electrical tests and visual inspection for the next test; duplication of these tests is not necessary unless so specified.1.1 These test methods provide procedures for stressing photovoltaic modules in simulated temperature and humidity environments. Environmental testing is used to simulate aging of module materials on an accelerated basis.1.2 Three individual environmental test procedures are defined by these test methods: a thermal cycling procedure, a humidity-freeze cycling procedure, and an extended duration damp heat procedure. Electrical biasing is utilized during the thermal cycling procedure to simulate stresses that are known to occur in field-deployed modules.1.3 These test methods define mounting methods for modules undergoing environmental testing, and specify parameters that must be recorded and reported.1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods.1.5 Any of the individual environmental tests may be performed singly, or may be combined into a test sequence with other environmental or non-environmental tests, or both. Certain pre-conditioning tests such as annealing or light soaking may also be necessary or desirable as part of such a sequence. The determination of any such sequencing and pre-conditioning is beyond the scope of this test method.1.6 These test procedures are limited in duration and therefore the results of these tests cannot be used to determine photovoltaic module lifetimes.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 These test methods are suitable for determining the level of purity and for determining the levels of various impurities. They may be used to establish compliance with specification requirements.1.1 These test methods cover procedures for the chemical analysis of basic carbonate white lead and basic sulfate white lead.NOTE 1: If it is necessary to separate these pigments from others, refer to Practice D215.1.2 The analytical procedures appear in the following order:  Section Preparation of Sample  6Basic Carbonate White Lead:   Small Amounts of Iron  7 Total Lead  8 Moisture and Other Volatile Matter  9 Carbon Dioxide (Evolution Method) 10 Carbon Dioxide and Combined Water (Combustion Method) 11 Lead Carbonate 12 Total Matter Insoluble in Acetic Acid 13 Total Matter Insoluble in Acid Ammonium Acetate 14 Total Impurities Other Than Moisture 15 Coarse Particles 16Basic Sulfate White Lead:   Small Amounts of Iron 17 Total Lead   Moisture and Other Volatile Matter 19 Total Sulfate 20 Zinc Oxide 21 Basic Lead Oxide 22 Total Impurities 23 Coarse Particles 241.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D3590-17 Standard Test Methods for Total Kjeldahl Nitrogen in Water Active 发布日期 :  1970-01-01 实施日期 : 

4.1 These test methods are useful for measuring organic nitrogen and ammoniacal nitrogen, which are essential growth nutrients.4.2 Nitrogen compounds are widely distributed in the environment. Sources of nitrogen include surface-applied fertilizers, cleaning products, and drinking water treatment aids. Because nitrogen is a nutrient for photosynthetic organisms, it may be important to monitor and control discharge into the environment.1.1 These test methods cover the determination of total Kjeldahl nitrogen. Section 24 on Quality Control pertains to these test methods. The following test methods are included:  Sections Test Method A—Manual Digestion/Distillation 8 – 14 Test Method B—Semiautomated Colorimetric Bertholt 15 – 231.2 The analyst should be aware that precision and bias statements included may not necessarily apply to the water being tested.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 There are many underground structures that are constructed for permanent or long-term use. Often, these structures are subjected to a relatively constant load. Creep tests provide quantitative parameters for stability analysis of these structures.5.2 The deformation and strength properties of rock cores measured in the laboratory usually do not accurately reflect large-scale in situ properties, because the latter are strongly influenced by joints, faults, inhomogeneities, weakness planes, and other factors. Therefore, laboratory test results of intact specimens shall be utilized with proper judgment in engineering applications.NOTE 1: The statements on precision and bias contained in this test method; the precision of this test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D3740 does not in itself assure reliable testing. Reliable testing depends on many factors; Practice D3740 provides a means of evaluating some of these factors.1.1 These test methods cover the creep behavior of intact weak and hard rock core in fixed states of stress at ambient (room) or elevated temperatures. For creep behavior at lower temperatures refer to Test Method D5520. The methods specify the apparatus, instrumentation, and procedures necessary to determine the strain as a function of time under sustained load at constant temperature and when applicable, constant humidity.1.1.1 Hard rocks are considered those with a maximum axial strain at failure of less than 2 %. Weak rocks include such materials as salt, potash, shale, and weathered rock, which often exhibit very large strain at failure.1.2 This standard consists of three methods that cover the creep capacity of core specimens.1.2.1 Method A—Creep of Hard Rock Core Specimens in Uniaxial Compression at Ambient or Elevated Temperature.1.2.2 Method B—Creep of Weak Rock Core Specimens in Uniaxial Compression at Ambient or Elevated Temperature.1.2.3 Method C—Creep of Rock Core Specimens in Triaxial Compression at Ambient or Elevated Temperature.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering design.1.5 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 7.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E439-23 Standard Test Methods for Chemical Analysis of Beryllium Active 发布日期 :  1970-01-01 实施日期 : 

4.1 These test methods for the chemical analysis of beryllium metal are primarily intended as referee methods to test such materials for compliance with compositional specifications. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory.1.1 These test methods cover the chemical analysis of beryllium having chemical compositions within the following limits:Element Range, %Aluminum  0.05  to 0.30Beryllium     97.5   to 100 Beryllium Oxide  0.3   to 3   Carbon  0.05  to 0.30Copper  0.005 to 0.10Chromium  0.005 to 0.10Iron  0.05  to 0.30Magnesium  0.02  to 0.15Nickel  0.005 to 0.10Silicon  0.02  to 0.151.2 The test methods in this standard are contained in the sections as follows.  SectionsChromium by the Diphenylcarbazide Spectrophotometric Test Method [0.004 % to 0.04 %] 10 – 19Iron by the 1,10-Phenanthroline Spectrophotometric Test Method [0.05 % to 0.25 %] 20 – 29Manganese by the Periodate Spectrophotometric Test Method [0.008 % to 0.04 %] 30 – 39Nickel by the Dimethylglyoxime Spectrophotometric Test Method [0.001 % to 0.04 %] 40 – 491.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 These methods are intended to determine whether a material, product, or part of a product has the degree of radiopacity desired for its application as a medical device in the human body. This method allows for comparison with or without the use of a body mimic. Comparisons without the use of a body mimic should be used with caution as the relative radiopacity can be affected when imaging through the human body.5.2 These methods allow for both qualitative and quantitative evaluation in different comparative situations.1.1 These test methods cover the determination of the radiopacity of materials and products utilizing X-ray based techniques, including fluoroscopy, angiography, CT (computed tomography), and DEXA (dual energy X-ray absorptiometry), also known as DXA, The results of these measurements are an indication of the likelihood of locating the product within the human body.1.2 Radiopacity is determined by (a) qualitatively comparing image(s) of a test specimen and a user-defined standard, with or without the use of a body mimic; or (b) quantitatively determining the specific difference in optical density or pixel intensity between the image of a test specimen and the image of a user-defined standard, with or without the use of a body mimic.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The ability of sintered powder metallurgy stainless steel parts/specimens to resist corrosion when immersed in sodium chloride solution is important to their end use. Causes of unacceptable corrosion may be incorrect alloy, contamination of the parts by iron or some other corrosion-promoting material or improper sintering of the parts (for example, undesirable carbide and nitride formations caused by poor lubricant burnoff or improper sintering atmosphere).5.2 This standard may be part of a purchase agreement between the PM parts producer and the purchaser of the parts (Method 1). It may also be used to optimize part or specimen production parameters (Method 2).1.1 These test methods cover a procedure for evaluating the ability of sintered PM stainless steel parts/specimens to resist corrosion when immersed in a sodium chloride (NaCl) solution.1.2 Corrosion resistance is evaluated by one of two methods. In Method 1, the stainless steel parts/specimens are examined periodically and the time to the first appearance of staining or rust is used to indicate the end point. In Method 2, continued exposure to the sodium chloride solution is used to monitor the extent of corrosion as a function of time.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
1124 条记录,每页 15 条,当前第 2 / 75 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页