微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

Preservatives of the metallic series and oil soluble preservatives are not readily apparent in a cross section of wood either due to similar color to the species of wood or lack of color of the preservative itself. Chemical staining of a treated specimen of wood reveals the presence of the preservative. The sapwood and heartwood of Douglas-Fir and the pine species can be differentiated by a chemical stain.1.1 These test methods cover procedures for determining penetration of preservatives in wood in cases where demarcation between the treated and untreated wood is not readily visible. Included are test methods for differentiating the heartwood and the sapwood of wood samples for specific species, and a test method for differentiating the heartwoods between the red oaks and the white oaks. 1.2 The procedures appear in the following order: Procedure Sections Penetration of Arsenic-Containing Preservatives 6 to 8 Penetration of Copper-Containing Preservatives 9 to 11 Penetration of Fluoride-Containing Preservatives 12 to 15 Penetration of Pentachlorophenol Using 4,4[prime]-bis-Dimethylamino-Triphenylmethane (DMTM) 16 to 20 Penetration of Pentachlorophenol Using a Silver-Copper Complex Known as "Penta-Check" 21 to 24 Penetration of Solvent Used With Oil-Soluble Preservatives 25 to 28 Penetration of Zinc-Containing Preservatives 29 to 32 Differentiating between Sapwood and Heartwood in Pine Species (Pinus sp.) 33 to 36 Differentiating between Sapwood and Heartwood in Douglas Fir (Pseudotsuga menziesii) 37 to 40 Differentiating between Sapwood and Heartwood in White Fir (Abies concolor) 41 to 44 Differentiating Between Woods of the Red Oak and the White Oak Species 45 to 48 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 These tests are suitable for testing paints adjusted for compatibility with various electrostatic spray coating applications, and by their use, spray performance can be optimized.1.1 These test methods cover the determination of specific resistance (resistivity) of liquid paints, solvents, and other fluids in the range of 0.6 to 2640 MΩ-cm.1.2 Test Method A describes a procedure for making resistance tests with a commonly used paint application test assembly (Fig. 1 and Fig. 2).FIG. 1 Analog Paint Application Test AssemblyFIG. 2 Diagram of Digital Application Test Assembly1.3 Test Method B describes a procedure for making resistance tests with a conductivity meter (Fig. 3).FIG. 3 Conductivity Meter1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Significance—The increased use of geomembranes as barrier materials to restrict fluid migration from one location to another in various applications, and the various types of seaming methods used in joining geomembrane sheets, has created a need to standardize tests by which the various seams can be compared and the quality of the seam systems can be evaluated. This test method is intended to meet such a need.4.2 Use—Accelerated seam test provides information as to the status of the field seam. Data obtained by this test method should be used with site-specific contract plans, specification, and CQC/CQA documents. This test method is useful for specification testing and for comparative purposes, but does not necessarily measure the ultimate strength that the seam may acquire.1.1 This test method covers an accelerated, destructive test method for geomembranes in a geotechnical application.1.2 This test is applicable to field-fabricated geomembranes that are scrim reinforced or nonreinforced.1.3 This test method is applicable for field seaming processes that use a chemical fusion agent or bodied chemical fusion agent as the seaming mechanism.1.4 Subsequent decisions as to seam acceptance criteria are made according to the site-specific contract plans, specification, and CQC/CQA documents.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 Hazardous Materials—The use of the oven in this test method may accelerate fume production from the test specimen and solvent(s) used to bond them.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Significance—With the increased use of geomembranes as a barrier material to restrict liquid migration from one location to another, a need has been created for a standard test method to evaluate the quality of geomembrane seams produced by tape methods. In the case of geomembranes, it has become evident that geomembrane seams can exhibit separation in the field under certain conditions. This is an index-type test method used for quality assurance and quality control purposes; it is also intended to provide the quality engineer with sufficient seam peel and shear data to evaluate seam quality.4.2 Use—Recording and reporting data, such as separation that occurs during the peel test and elongation during the shear test, will allow the quality assurance engineer to take measures necessary to ensure the repair of inferior seams during construction, and therefore, minimize the potential for seam separation while in service. The acceptable value of adhesion measured will, of course, vary from product to product as a result of different formulations and types of products. However, once a product is established, minimum values of separation force can be determined and agreed to by producer and consumer, and both can monitor the installation to ensure maintenance of the agreed-upon minimum value.1.1 This test method describes destructive quality control and/or quality assurance tests to determine the integrity of seams produced using taped seaming methods. This test method presents the procedures used for determining the quality of taped seams subjected to both peel and shear tests. These test procedures are intended for nonreinforced and reinforced geomembranes.1.2 The types of tape seaming techniques used to construct geomembrane seams include the following:1.2.1 Inseam Tape—This technique requires the membrane to be overlapped a minimum distance. The top sheet is folded back and both the bottom sheet and the top sheet are primed with an adhesive primer. The primer is allowed to flash off. The tape adhesive is applied to the bottom sheet so that a minimum of the tape will extend out from under the top sheet when laid over the tape. The top sheet is allowed to lay flat over the tape and the release paper is removed by pulling it at a 45° to 90° angle, keeping the release paper flat to the surface of the bottom sheet. The seam area is then rolled with a silicone-sleeved roller.1.2.2 Cover Strip Tape—This technique requires the membrane to be overlapped a minimum distance. An area either side of the seam edge is primed. The primer is allowed to flash off. The cover strip is applied with the adhesive side down, centered over the top sheet edge while removing the release paper as it proceeds along centered over the edge of the top sheet. The cover strip is then rolled with a silicone-sleeved roller.1.3 For nondestructive test methods, see Practice D4437/D4437M.1.4 This test method is applicable for seaming processes that use tape adhesive as a seaming mechanism.1.5 Subsequent decisions as to seam acceptance criteria are made according to the site-specific contract plans, specifications, and contractor quality control/contractor quality assurance (CQC/CQA) documents.1.6 In case of a material-specific test method, this test method shall take precedence.1.7 Hazardous Materials—Always consult the proper material safety data sheets for any hazardous material used for the proper ventilation and protection. The use of the oven in these test methods, in this practice, may accelerate fume production from the test specimen.1.8 The values stated in both inch-pound and SI units are to be regarded separately as the standard. Values in parentheses are for information only.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

AbstractThese test methods define two categories of acceptance tests for evaluating the performance of highway traffic monitoring devices (TMD) according to the functions it performs, the data it provides, the required accuracy of the data, and the conditions under which the device operates. The tests are performed in a field environment and result in an accept or reject decision for the TMD under analysis. The first test is the Type-approval Test intended for TMDs that have never been type approved, and verifies the functionality of all features of the TMD by providing information for evaluating the accuracy of the data item outputs when monitoring vehicle flows consisting of a mix of all anticipated vehicle classes under a specified range of operating conditions. The second, the On-site Verification Test, is applicable to production versions of TMDs that have previously passed a Type-approval Test, but are now being installed at a new location or have been repaired. Lighting and weather factors that may be included as part of TMD testing are (1) dawn ambient lighting, (2) dusk ambient lighting, (3) nighttime ambient lighting, (4) sun glint, (5) rain characterized by rain rate, (6) fog or dust characterized by human visual range, and (7) snow characterized by snow fall rate and snow flake size.1.1 Purpose—The two test methods contained in this standard define acceptance tests for evaluating the performance of a Traffic Monitoring Device (TMD) according to the functions it performs, the data it provides, the required accuracy of the data, and the conditions under which the device operates. Acceptance tests are recommended whenever a TMD is purchased, installed, or performance validation is desired. The tests are performed in a field environment and result in an accept or a reject decision for the TMD under test.1.2 Exceptions—Exceptions and options to the test methods may be included in any derivative test method presented by a user as part of the procurement process for TMDs. Sellers may offer exceptions and options in responding to an invitation to bid.1.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units,2 which are provided for information only and are not considered standard.1.4 The following safety procedures apply to Sections 6 and 7, which describe the details of the acceptance test methods. When a test site accessible by the public (for example, a street or highway) is used for the acceptance test of the TMD, obtain approval from the public authority having jurisdiction over the site for the traffic control procedures to be used during the test. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM E701-80(2018) Standard Test Methods for Municipal Ferrous Scrap Active 发布日期 :  1970-01-01 实施日期 : 

3.1 The establishment of these test methods for municipal ferrous scrap as a raw material for certain industries (see Specification E702) will aid commerce in such scrap by providing the chemical and physical tests for the characterization of the scrap needed as a basis for communication between the purchaser and supplier.1.1 These test methods cover various tests for assessing the usefulness of a ferrous fraction recovered from municipal wastes.1.2 These test methods comprise both chemical and physical tests, as follows:  SectionSampling  5Bulk Density  6Total Combustibles  7Chemical Analysis (for Industries Other Than the Detinning Industry)  8Magnetic Fraction (for the Detinning Industry)  9Chemical Analysis for Tin (for the Detinning Industry) 10Metallic Yield for All Industries Other Than the Copper Industry and the Detinning Industry 111.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 These test methods provide a means to measure quantitatively the bond integrity between the outer layers of the transparency and the interlayer, or to measure the cohesive properties of the interlayer, under various loading conditions.4.2 These test methods provide empirical results useful for control purposes, correlation with service results, and as quality control tests for acceptance of production parts.4.3 Test results obtained on small, laboratory-size samples shown herein are indicative of full-size part capability, but not necessarily usable for design purposes.1.1 These test methods cover determination of the bond integrity of transparent laminates. The laminates are usually made of two or more glass or hard plastic sheets held together by an elastomeric material. These test methods are intended to provide a means of determining the strength of the bond between the glass or plastic and the elastomeric interlayer under various mechanical or thermal loading conditions.1.2 The test methods appear as follows:Test Methods SectionsTest Method A—Flatwise Bond Tensile Strength  5 – 11Test Method B—Interlaminar Shear Strength 12 – 17Test Method C—Creep Rupture 18 – 25Test Method D—Thermal Exposure 26 – 301.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 These test methods determine whether copper products will be resistant to embrittlement when exposed to elevated temperatures in a reducing atmosphere.5.1.1 It is assumed that all who use these test methods will be trained personnel capable of performing these procedures skillfully and safely. It is expected that work will be performed in a properly equipped facility.1.1 These test methods describe procedures for determining the presence of cuprous oxide (Cu2O) in products made from deoxidized and oxygen-free copper.1.2 The test methods appear in the following order:  Sections   Microscopical Examination without Thermal Treatment 9 – 11Microscopical Examination after Thermal Treatment 13 – 15Closed Bend Test after Thermal Treatment 17 – 19Reverse Bend Test after Thermal Treatment 21 – 231.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D1627-94(2000) Standard Test Methods for Chemical Analysis of Acid Copper Chromate (Withdrawn 2006) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 These test methods cover the chemical analysis of solid acid copper chromate and solutions of this material. 1.1.1 Test Method D38 covers the sampling of wood preservatives prior to testing. 1.2 The analytical procedures appear in the following order: Sections Copper (calculated as CuO) 7 to 10 Hexavalent chromium (calculated as CrO ) 11 to 13 pH of solution 14 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The acid and base concentrations are a measurement of the titratable acidic and alkaline components in the electrocoat baths. These measurements are used for research, production or electrocoat bath process control.1.1 These test methods cover the determination of acid and base milliequivalent contents of anodic and cathodic electrocoat baths and their ultrafiltrates.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 These test methods are designed to broaden the scope of the earlier editions of the test method by the inclusion of tall oil and tall oil derived products as test materials and is referenced in Test Methods D803.3.2 The saponification number is an important property of tall oil and the products obtained by the fractionation of tall oil. It is the test method widely used to determine the total acid content, both free and combined, of these products.3.3 The potentiometric test method should be used when the most reproducible results are required.1.1 These test methods cover the determination of the saponification number of tall oil and products obtained by the fractionation of tall oil such as rosin, fatty acids and distilled tall oil as defined in Terminology D804. These test methods are also applicable to gum and wood rosin. Two test methods are covered as follows:1.1.1 Test method using a potentiometric method, and1.1.2 Test method using an internal indicator method.1.2 The potentiometric method is suitable for use with both light- and dark-colored test samples. It should be considered the referee method. The internal indicator method is suitable for use only with light- and medium-colored test samples. It should be considered the alternate method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 These test methods for the chemical analysis of metals and alloys are primarily intended as referee methods to test such materials for compliance with compositional specifications, particularly those under the jurisdiction of ASTM Committees A01 on Steel, Stainless Steel, and Related Alloys and A04 on Iron Castings. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory under appropriate quality control practices such as those described in Guide E882.1.1 These test methods cover the chemical analysis of carbon steels, low-alloy steels, silicon electrical steels, ingot iron, and wrought iron having chemical compositions within the following limits:Element  Composition Range, %Aluminum 0.001  to 1.50Antimony 0.002  to 0.03Arsenic 0.0005 to 0.10Bismuth 0.005  to 0.50Boron 0.0005 to 0.02Calcium 0.0005 to 0.01Cerium 0.005  to 0.50Chromium 0.005  to 3.99Cobalt 0.01   to 0.30Columbium (Niobium) 0.002  to 0.20Copper 0.005  to 1.50Lanthanum 0.001  to 0.30Lead 0.001  to 0.50Manganese 0.01   to 2.50Molybdenum 0.002  to 1.50Nickel 0.005  to 5.00Nitrogen 0.0005 to 0.04Oxygen 0.0001 to 0.03Phosphorus 0.001  to 0.25Selenium 0.001  to 0.50Silicon 0.001  to 5.00Sulfur 0.001  to 0.60Tin 0.002  to 0.10Titanium 0.002  to 0.60Tungsten 0.005  to 0.10Vanadium 0.005  to 0.50Zirconium 0.005  to 0.151.2 The test methods in this standard are contained in the sections indicated as follows:  Sections   Aluminum, Total, by the 8-Quinolinol Gravimetric Method (0.20 % to 1.5 %) 124–131Aluminum, Total, by the 8-Quinolinol Spectrophotometric Method (0.003 % to 0.20 %) 76–86Aluminum, Total or Acid-Soluble, by the Atomic Absorption Spectrometry Method (0.005 % to 0.20 %) 308–317Antimony by the Brilliant Green Spectrophotometric Method (0.0002 % to 0.030 %) 142–151Bismuth by the Atomic Absorption Spectrometry Method (0.02 % to 0.25 %) 298–307Boron by the Distillation-Curcumin Spectrophotometric Method (0.0003 % to 0.006 %) 208–219Calcium by the Direct-Current Plasma Atomic Emission Spectrometry Method (0.0005 % to 0.010 %) 289–297Carbon, Total, by the Combustion Gravimetric Method (0.05 % to 1.80 %)—Discontinued 1995  Cerium and Lanthanum by the Direct Current Plasma Atomic Emission Spectrometry Method (0.003 % to 0.50 % Cerium, 0.001 % to 0.30 % Lanthanum) 249–257Chromium by the Atomic Absorption Spectrometry Method (0.006 % to 1.00 %) 220–229Chromium by the Peroxydisulfate Oxidation-Titration Method (0.05 % to 3.99 %) 230–238Cobalt by the Nitroso-R Salt Spectrophotometric Method (0.01 % to 0.30 %) 53–62Copper by the Sulfide Precipitation-Iodometric Titration Method (Discontinued 1989) 87–94Copper by the Atomic Absorption Spectrometry Method (0.004 % to 0.5 %) 279–288Copper by the Neocuproine Spectrophotometric Method (0.005 % to 1.50 %) 114–123Lead by the Ion-Exchange—Atomic Absorption Spectrometry Method (0.001 % to 0.50 %) 132–141Manganese by the Atomic Absorption Spectrometry Method (0.005 % to 2.0 %) 269–278Manganese by the Metaperiodate Spectrophotometric Method (0.01 % to 2.5 %) 9–18Manganese by the Peroxydisulfate-Arsenite Titrimetric Method (0.10 % to 2.50 %) 164–171Molybdenum by the Thiocyanate Spectrophotometric Method (0.01 % to 1.50 %) 152–163Nickel by the Atomic Absorption Spectrometry Method (0.003 % to 0.5 %) 318–327Nickel by the Dimethylglyoxime Gravimetric Method (0.1 % to 5.00 %) 180–187Nickel by the Ion-Exchange-Atomic-Absorption Spectrometry Method (0.005 % to 1.00 %) 188–197Nitrogen by the Distillation-Spectrophotometric Method (Discontinued 1988) 63–75Phosphorus by the Alkalimetric Method (0.02 % to 0.25 %) 172–179Phosphorus by the Molybdenum Blue Spectrophotometric Method (0.003 % to 0.09 %) 19–30Silicon by the Molybdenum Blue Spectrophotometric Method (0.01 % to 0.06 %) 103–113Silicon by the Gravimetric Titration Method (0.05 % to 3.5 %) 46–52Sulfur by the Gravimetric Method (Discontinued 1988) 31–36Sulfur by the Combustion-Iodate Titration Method (0.005 % to 0.3 %) (Discontinued 2017) 37–45Tin by the Sulfide Precipitation-Iodometric Titration Method (0.01 % to 0.1 %) 95–102Tin by the Solvent Extraction-Atomic Absorption Spectrometry Method (0.002 % to 0.10 %) 198–207Titanium by the Diantipyrylmethane Spectrophotometric Method (0.025 % to 0.30 %) 258–268Vanadium by the Atomic Absorption Spectrometry Method (0.006 % to 0.15 %) 239–2481.3 Test methods for the determination of several elements not included in this standard can be found in Test Methods E1019.1.4 Some of the composition ranges given in 1.1 are too broad to be covered by a single test method and therefore this standard contains multiple test methods for some elements. The user must select the proper test method by matching the information given in the and Interference sections of each test method with the composition of the alloy to be analyzed.1.5 The values stated in SI units are to be regarded as standard. In some cases, exceptions allowed in IEEE/ASTM SI 10 are also used.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 6 and in special “Warning” paragraphs throughout these test methods.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

4.1 The purpose of this document is to provide valid and repeatable test methods for the evaluation of Externally Loaded Strength Training Equipment, Strength Training Benches and External Weight Storage Equipment assembled and maintained according to the manufacturer's specifications. Use of these test methods in conjunction with Specification F3105 is intended to maximize the reliability of the equipment’s design and reduce the risk of serious injury resulting from design deficiencies.1.1 These test methods specify procedures and apparatus used for testing and evaluating Externally Loaded Strength Training Equipment, Strength Training Benches and External Weight Storage Equipment for compliance to Specification F3105. Both design and operational parameters will be evaluated. Where possible and applicable, accepted test methods from other recognized bodies will be used and referenced.1.2 Requirements—This equipment is to be tested in accordance with this test method or Test Methods F2571 for all of the following parameters:1.2.1 Stability,1.2.2 Edge and corner sharpness,1.2.3 Tube ends,1.2.4 Entrapment and pinch points,1.2.5 Weight disc retention,1.2.6 Function of adjustments and locking mechanisms,1.2.7 Training weight post loading,1.2.8 Storage weight post loading,1.2.9 Stop height verification,1.2.10 Stop load drop test,1.2.11 Barbell hook dimensions,1.2.12 Catch hook load drop test,1.2.13 Barbell support/frame impact test,1.2.14 Intrinsic loading,1.2.15 Extrinsic loading,1.2.16 Endurance loading, and1.2.17 Documentation and warnings verification.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers standard methods for sampling and testing of various ferroalloys for size analysis. Ferroalloys are classified into lump and crushed or plates sizes. The small-sized samples subject to screen testing shall be taken from the lot sample by riffling, and larger sized samples by mixing and quartering. Sizing of lumps shall be done by visual examination. Crushed or plates materials shall be subjected to sieving by using either manually driven or mechanically driven screen vibrators to divide samples into several size fractions.1.1 These test methods cover procedures for the sampling and testing of the various ferroalloys for sizing, either before or after shipment from the plants of the manufacturers.1.2 They are designed to give results representative of each lot that will be comparable with the manufacturer's certified analysis for the same lot.1.3 The purchaser may use any sampling procedure he desires, but the results obtained on such samples shall not be a basis for complaint or rejection, unless the procedure followed is of an accuracy equivalent to that prescribed in these test methods.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4.1 Exception—The SI units that correspond to mesh sizes in Table 1 are to be regarded as standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 Refractory brick are used as modular units in furnace construction and should not deviate significantly from the intended configuration with respect to size, bulk density, flat surfaces, and right angles. These test methods are particularly suited for use under field conditions and provide a means to determine whether the brick meets the requirements considered necessary to assure a satisfactory refractory construction.1.1 These test methods cover procedures for measuring size, dimensional measurement, bulk density, warpage, and squareness of rectangular dense refractory brick and rectangular insulating firebrick. More precise determination of bulk density of refractory brick can be made by Test Methods C20. Stack height is generally determined only for dense refractories.NOTE 1: Test Methods C830 and Test Method C914 are also used to determine bulk density of refractory brick, by different procedures.1.2 The test methods appear in the following order:  SectionsSize and Bulk Density 4 through 7Warpage of Refractory Brick  8 through 10Squareness of Refractory Brick 11 through 141.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
1124 条记录,每页 15 条,当前第 1 / 75 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页