微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers resilient connectors between reinforced concrete manhole structures, pipes, and laterals. Resilient materials for connectors and filler rings shall be manufactured from natural or synthetic rubber and shall conform to the prescribed requirements. Mechanical devices shall be made from a material or materials in combination that will ensure durability, strength, resistance to corrosion, and have properties that will ensure continued resistance to leakage. The design of pipe connectors and pipe stubs are specified. The physical properties and chemical composition shall conform to the required tests for chemical resistance, tensile strength, elongation at break, hardness, accelerated oven-aging, compression set, water absorption, ozone resistance, low-temperature brittle point, and tear resistance.1.1 This specification covers the minimum performance and material requirements for resilient connectors used for connections between reinforced concrete manholes conforming to Specification C478/C478M and pipes, between wastewater structures and pipes, and between precast reinforced concrete pipe and laterals.1.1.1 These connectors are designed to minimize leakage between the pipe and manhole, and between the pipe and lateral.1.2 The values stated in inch pound or SI units are to be regarded separately as standard. The SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.NOTE 1: This specification covers the design, material, and performance of the resilient connection only. Connections covered by this specification are adequate for hydrostatic pressures up to 13 psi (30 ft) [90 kPa (9.1 m)] without leakage when tested in accordance with Section 7. Infiltration or exfiltration quantities for an installed system are dependent upon many factors other than the connections between manhole structures and pipe, and allowable quantities must be covered by other specifications and suitable testing of the installed pipeline and system.1.3 The following precautionary caveat pertains only to the test methods portion, Section 7, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific precaution statement, see 7.2.5.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers resilient connectors between reinforced concrete manhole structures, pipes, and laterals. Resilient materials for connectors and filler rings shall be manufactured from natural or synthetic rubber and shall conform to the prescribed requirements. Mechanical devices shall be made from a material or materials in combination that will ensure durability, strength, resistance to corrosion, and have properties that will ensure continued resistance to leakage. The design of pipe connectors and pipe stubs are specified. The physical properties and chemical composition shall conform to the required tests for chemical resistance, tensile strength, elongation at break, hardness, accelerated oven-aging, compression set, water absorption, ozone resistance, low-temperature brittle point, and tear resistance.1.1 This specification covers the minimum performance and material requirements for resilient connectors used for connections between precast reinforced concrete manholes conforming to Specification C478 and pipes, and between precast reinforced concrete pipe and laterals.1.1.1 These connectors are designed to minimize leakage between the pipe and manhole, and between the pipe and lateral.1.2 This specification is the SI companion to Specification C923.NOTE 1: This specification covers the design, material, and performance of the resilient connection only. Connections covered by this specification are adequate for hydrostatic pressures up to 90 kPa (9.1 m) without leakage when tested in accordance with Section 7. Infiltration or exfiltration quantities for an installed system are dependent upon many factors other than the connections between manhole structures and pipe, and allowable quantities must be covered by other specifications and suitable testing of the installed pipeline and system.1.3 The following precautionary caveat pertains only to the test methods portion, Section 7, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific precaution statement, see 7.2.5.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

2.1 This guide is not meant to mandate a specific structure or responsibility at the various levels but rather to suggest a means or method that will allow for the creation or further development of a state, regional, or local EMS system.2.2 This guide will assist state, regional, or local organizations in establishing EMS systems or refining existing EMS systems.1.1 This guide establishes optimum guidelines for the structures and responsibilities that will facilitate development, delivery, and assessment of Emergency Medical Services (EMS) on state, regional, and local levels.1.1.1 State Level—At the state level, this guide sets forth a basic structure for the organization and management of a state emergency medical services program and outlines the responsibilities of the state in the planning, development, coordination, and regulation of emergency medical services throughout the state.1.1.2 Regional Level—At the regional level, this guide addresses the planning, development, and coordination of a functional and comprehensive EMS system which consists of all personnel, equipment, and facilities necessary for the response to the emergently ill or injured patient, according to national and state lead agency standards.1.1.3 Local Level—At the local level, this guide sets forth a basic structure for the organization and management of a local EMS system and outlines the responsibilities that a local EMS should assume in the planning, development, implementation, and evaluating of its EMS system.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the minimum material requirements and describes the procedures for installing concrete pavements and linings in corrugated steel pipes and structural plate structures in the field. Concrete pavements shall be placed after the pipe has been installed. The concrete for pavements shall meet a minimum compressive strength. Concrete linings shall be placed after the pipe has been installed and backfilled to final grade. Concrete materials for pavements and linings shall consist of Portland cement, fly ash (when used), aggregates and water. The concrete mix shall be uniform and homogeneous. Pavements shall have a troweled or untroweled surface finish as specified in the contract documents. When paving or lining new pipes, damaged pipe shall be replaced or repaired in accordance with the ASTM documents referenced herein. Cleaning preparations, pavement methods, lining methods, and curing shall be followed accordingly for installing concrete pavements and linings in corrugated steel pipes.1.1 This specification covers the minimum material requirements and describes the procedures for installing concrete pavements and linings in corrugated steel pipes and structural plate structures in the field. Specific designs with additional or greater requirements shall be detailed in the contract documents. This specification is applicable to paving or lining new pipes and for rehabilitating existing structures. The pipe to be paved or lined is described in Specifications A760/A760M, A761/A761M, and A762/A762M.1.2 This specification covers pipes 48 in. [1200 mm] and larger for pavements and 24 in. [600 mm] and larger for full linings.1.3 New pipes are to be designed in accordance with Practice A796/A796M and installed in accordance with Practice A798/A798M for factory-made pipes and Practice A807/A807M for structural plate structures. Structures to be rehabilitated shall be structurally stable.1.4 Pipes with plant installed concrete pavements and linings are covered under Specification A849.1.5 This specification is applicable to product in either inch/pound units as A979 or in SI units as A979M. Inch/pound units and SI units are not necessarily equivalent. SI units are shown in brackets in the text for clarity, but they are the applicable values when materials are ordered to A979M.1.6 This standard may involve hazardous materials, operations and equipment. The standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

9.1 Architectural strip seals included in this specification shall be those:9.1.1 Extruded as a membrane,9.1.2 Extruded as tubular,9.1.3 With frames,9.1.4 With flanges mechanically secured,9.1.5 With flanges chemically secured,9.1.6 Used in interior or exterior applications, and9.1.7 Used in any construction of the building.9.2 This specification will give users, producers, building officials, code authorities, and others a basis for verifying material and performance characteristics of representative specimens under common test conditions. This specification will produce data on the following:9.2.1 The physical properties of the fully cured elastomeric alloy, and9.2.2 The movement capability in relation to the nominal joint width as defined under Test Method E1399/E1399M.9.3 This specification compares similar architectural strip seals but is not intended to reflect the system's application. “Similar” refers to the same type of architectural strip seal within the same subsection under 9.1.9.4 This specification does not provide information on the following:9.4.1 Durability of the architectural strip seal under actual service conditions, including the effects of cycled temperature on the strip seal;9.4.2 Loading capability of the system and the effects of a load on the functional parameters established by this specification;9.4.3 Shear and rotational movements of the specimen;9.4.4 Any other attributes of the specimen, such as fire resistance, wear resistance, chemical resistance, air infiltration, watertightness, and so forth; andNOTE 3: This specification addresses fully cured elastomeric alloys. Test Methods D395, D573, D1052, and D1149 are tests better suited for evaluating thermoset materials.9.4.5 Testing or compatibility of substrates.9.5 This specification is intended to be used as only one element in the selection of an architectural strip seal for a particular application. It is not intended as an independent pass or fail acceptance procedure. Other standards shall be used in conjunction with this specification to evaluate the importance of other service conditions such as durability, structural loading, and compatibility.AbstractThis specification covers the physical requirements and movement capabilities of preformed architectural strip seals for use in sealing expansion joints in buildings and parking structures. However, this specification does not provide information on the durability of the architectural strip seals under actual service conditions, loading capability of the system, and the effects of a load on the functional parameters. Material covered by this specification consists of architectural strip seals extruded as a membrane or tubular, with frames, with flanges mechanically or chemically secured, used in interior or exterior application, and used in any construction of the building. The architectural strip seal shall be manufactured from a fully cured elastomeric alloy as a preformed extrusion free of defects such as holes and air bubbles, and with dimensions conforming to the requirements specified. Tests for tensile strength, elongation at break, hardness, ozone resistance, compression set, heat aging, tear resistance, brittleness temperature, and water absorption shall be performed and shall conform to the requirements specified.1.1 This specification covers the physical requirements for the fully cured elastomeric alloy and the movement capabilities of preformed architectural compression seals used for sealing expansion joints in buildings and parking structures. The preformed architectural strip seal is an elastomeric extrusion. This extrusion is either a membrane or tubular having an internal baffle system produced continuously and longitudinally throughout the material. These extrusions are secured in or over a joint by locking rails or an end dam nosing material. The architectural strip seal is compressed and expanded by this mechanical or chemical attachment.NOTE 1: Movement capability is defined in Test Method E1399/E1399M.1.2 This specification covers all colors of architectural strip seals.NOTE 2: The products described in this specification are manufactured from thermoplastic elastomers defined as “fully cured elastomeric alloys” in Test Method D5048.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers titanium alloy bars with surface deformations and 90-degree anchorage hooks for use as near surface mounts for flexural and shear strengthening of concrete beams. The product can be furnished with or without anchorage hooks as specified by the purchaser. If supplied without hooks, the hooks shall be bent on-site prior to installation, as this method requires two 90-degree anchorage hooks.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This AE examination is useful to detect micro-damage generation, accumulation, and growth of new or existing flaws. The examination is also used to detect significant existing damage from friction-based AE generated during loading or unloading of these regions. The damage mechanisms that can be detected include matrix cracking, fiber splitting, fiber breakage, fiber pull-out, debonding, and delamination. During loading, unloading, and load holding, damage that does not emit AE energy will not be detected.5.2 When the detected signals from AE sources are sufficiently spaced in time so as not to be classified as continuous AE, this practice is useful to locate the region(s) of the 2-D test sample where these sources originated and the accumulation of these sources with changing load or time, or both.5.3 The probability of detection of the potential AE sources depends on the nature of the damage mechanisms, flaw characteristics, and other aspects. For additional information, see X1.4.5.4 Concentrated damage in fiber/polymer composites can lead to premature failure of the composite item. Hence, the use of AE to detect and locate such damage is particularly important.5.5 AE-detected flaws or damage concentrated in a certain region may be further characterized by other NDE techniques (for example, visual, ultrasonic, etc.) and may be repaired as appropriate. Repair procedure recommendations and the subsequent examination of the repair are outside the scope of this practice. For additional information, see X1.5.5.6 This practice does not address sandwich core, foam core, or honeycomb core plate-like composites due to the fact that currently there is little in the way of published work on the subject resulting in a lack of a sufficient knowledge base.5.7 Refer to Guide E2533 for additional information about types of defects detected by AE, general overview of AE as applied to polymer matrix composites, discussion of the Felicity ratio (FR) and Kaiser effect, advantages and limitations, AE of composite parts other than flat panels, and safety hazards.1.1 This practice covers acoustic emission (AE) examination or monitoring of panel and plate-like composite structures made entirely of fiber/polymer composites.1.2 The AE examination detects emission sources and locates the region(s) within the composite structure where the emission originated. When properly developed AE-based criteria for the composite item are in place, the AE data can be used for nondestructive examination (NDE), characterization of proof testing, documentation of quality control, or for decisions relative to structural-test termination prior to completion of a planned test. Other NDE methods may be used to provide additional information about located damage regions. For additional information, see X1.1 in Appendix X1.1.3 This practice can be applied to aerospace composite panels and plate-like elements as a part of incoming inspection, during manufacturing, after assembly, continuously (during structural health monitoring), and at periodic intervals during the life of a structure.1.4 This practice is meant for fiber orientations that include cross-plies, angle-ply laminates, or two-dimensional woven fabrics. This practice also applies to 3-D reinforcement (for example, stitched, z-pinned) when the fiber content in the third direction is less than 5 % (based on the whole composite).1.5 This practice is directed toward composite materials that typically contain continuous high modulus greater than 20 GPa [3 Msi] fibers.1.6 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is used to estimate and categorize the number and type of fungal structures present on an inertial impactor sample.5.2 Fungal structures are identified and quantified regardless of whether they would or would not grow in culture.5.3 It must be emphasized that the detector in this test method is the analyst, and therefore results are subjective, depending on the experience, training, qualification, and mental and optical fatigue of the analyst.1.1 This test method is a procedure that uses direct microscopy to analyze the deposit on an inertial impaction sample.1.2 This test method describes procedures for categorizing and enumerating fungal structures by morphological type. Typically, categories may be as small as genus (for example, Cladosporium) or as large as phylum (for example, basidiospores).1.3 This test method contains two procedures for enumerating fungal structures: one for slit impaction samples and one for circular impaction samples. This test method is applicable for impaction air samples, for which a known volume of air (at a rate as recommended by the manufacturer) has been drawn, and is also applicable for blank impaction samples.1.4 Enumeration results are presented in fungal structures/sample (fs/sample) and fungal structures/m3 (fs/m3).1.5 The range of enumeration results that can be determined with this test method depends on the size of the spores on the sample trace, the amount of particulate matter on the sample trace, the percentage of the sample trace counted, and the volume of air sampled.1.6 This test method addresses only the analysis of samples. The sampling process and interpretation of results is outside the scope of this test method.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The significance of this test method is to standardize the analysis of the detection of removable fungal structures lifted from a surface with tape to improve consistency between laboratories and analysts.5.2 This test method is intended to ensure consistent data to the end user.5.3 Fungal structures are identified and semi-quantified regardless of whether they would or would not grow in culture.5.4 It must be emphasized that the detector in this test method is the analyst, and therefore results are subjective, depending on the experience, training, qualification, optical acuity, and mental fatigue of the analyst.5.5 This test method can be used to assess the presence and characteristics of fungal material on a surface.1.1 This test method uses optical microscopy for the detection, semi-quantification, and identification of fungal structures in tape lift preparations.1.2 This test method describes the preparation techniques for tape-lift matrices, the procedure for confirming the presence of fungal structures, and the reporting of observed fungal structures1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers the recommended design requirements and manufacturing practices for monolithic or sectional precast concrete water and wastewater structures with the exception of concrete pipe, box culverts, utility structures, septic tanks, grease interceptor tanks, and items included under the scope of Specification C478/C478M.NOTE 1: Water and wastewater structures are defined as solar heating reservoirs, cisterns, holding tanks, leaching tanks, extended aeration tanks, wet wells, pumping stations, distribution boxes, oil-water separators, treatment plants, manure pits, catch basins, drop inlets, and similar structures.NOTE 2: Installation and sealant requirements should receive special consideration due to special features of the application.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Overlap splices are used in field applications of FRP composites when site conditions prohibit continuous access to a structural element or when the specified length of the FRP composite is such that saturation and placement of the entire length would be cumbersome. This method can be used as a quality control mechanism for ensuring that overlap splices constructed under field conditions meet or exceed the requirements established by the design engineer or FRP system manufacturer. Both the saturant mixing and fiber saturation method can be verified for wet-layup FRP systems.5.2 Caution is recommended when interpreting apparent shear strength results obtained from this method. Single shear lap splices develop non-uniform shear stress distributions within the overlap splice region during testing. Additional guidance on the interpretation and use of results obtained from lap shear testing is found in D4896.5.3 This test method focuses on the FRP material itself, irrespective of gripping method. Therefore, strengths resulting from failure or pullout at either grip are disregarded. The strength measurements are based solely on test specimens that fail in the gauge section (away from the grips) or at the splice.1.1 This test method describes the requirements for sample preparation and tensile testing of single-lap shear splices formed with fiber-reinforced polymer (FRP) composite materials commonly used for strengthening of structures made of materials such as metals, timber, masonry, and reinforced concrete. The objective of this method is to determine the apparent shear strength of an overlap splice joint through the application of a far-field tensile force. The method applies to wet lay-up FRP material systems fabricated on site or in a laboratory setting. The FRP composite may be of either unidirectional (0°) or cross-ply (0/90 type) reinforcement. For cross-ply laminates, the construction may be achieved using multiple-layers of unidirectional fibers at either 0 or 90°, or one or more layers of stitched or woven 0/90 fabrics. The composite material forms are limited to continuous fiber or discontinuous fiber-reinforced composites in which the laminate is balanced and symmetric with respect to the test direction. The method is often used to determine the length of the overlap splice needed to ensure that a tension failure occurs in the material away from the splice rather than the splice connection itself.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 This standard provides measurement procedures for determining the electromagnetic shielding effectiveness of durable rigid wall relocatable shielded enclosures. This standard specifies a method for comparing the shielded enclosure performance of structures provided by different suppliers. In addition, this standard is written to minimize variations in measured shielding effectiveness at a given frequency and test point regardless of test personnel, equipment, and test site. Therefore, the shielding effectiveness of a durable rigid wall relocatable shielded enclosure of any size from any supplier can be determined. This standard specifies a minimum set of measurements at a given frequency and a minimum set of frequencies to determine shielding effectiveness.5.2 Source Fields—Performance of a shielded enclosure is to be assessed for two source fields: magnetic and plane wave.5.2.1 Magnetic Field Measurements—The attenuation provided by a shielded enclosure is assessed by using a local source to generate the near field. The magnetic field measurements are specified for two narrow frequency bands: 140 kHz to 160 kHz and 14 MHz to 16 MHz.5.2.2 Plane Wave Measurements—The attenuation provided by a shielded enclosure is assessed by using a locally generated distant source or plane wave field. The plane wave measurements are specified for three narrow frequency bands: 300 MHz to 500 MHz, 900 MHz to 1000 MHz, and 8.5 GHz to 10.5 GHz.1.1 This test method covers the determination of the electromagnetic shielding effectiveness of durable relocatable shielded enclosures.1.1.1 The intended application of this test method is for virgin shielded enclosures that do not have any equipment or equipment racks. It is recommended that tests be conducted before the interior finish work begins. However, the shield assembly including all enclosure penetrations shall be completed and required penetration protection devices shall be installed in accordance with the design specification. The test method can also be used on existing shielded enclosures after repair work is done to verify workmanship, but it may be necessary to remove equipment or equipment racks to gain access to a test area.1.1.2 The test procedures delineated in this document are comprehensive and may require several days to complete for a room-size shielded enclosure. A user can apply this test method for a first article test that requires proof of concept and validation of design and fabrication technique. Appendix X2 provides guidance on choosing test points so shielding effectiveness tests on a room-size shielded enclosure may be completed in about one-half day for which it applies to shielded enclosures coming off an assembly line.1.2 This test method is for use in the following frequency ranges: 140 kHz to 160 kHz, 14 MHz to 16 MHz, 300 MHz to 500 MHz, 900 MHz to 1000 MHz, and 8.5 GHz to 10.5 GHz. Specific test frequencies within these ranges are required (see 11.1.1 and 11.2.1). Additional measurements in the range of 10 kHz to 10.5 GHz may be performed. For specific applications, the frequency range may be extended from 50 Hz to 40 GHz. Appendix X1 provides guidance on selecting measurement frequencies.1.3 This test method is not applicable to individual components such as separate walls, floors, ceilings, or shielded racks.1.4 This standard may involve hazardous materials, operations, equipment, or any combination.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM F2991-13 Standard Guide for Doubler Plate Repairs for Non-Classed Ship Structures (Withdrawn 2021) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

This guide provides information for designing permanent steel doublers used in surface ships that are not classed with any classification society and not load line certified. It describes the requirements for designing and welding a doubler plate to the damaged portion of the structure so that the damaged structure regains its original local strength. For the welding of steel, the guide prescribes a welding procedure suitable for the grade of steel and intended use or service. The standard covers the applicability of doubler plates, materials and their manufacture, dimensions, workmanship, finish, appearance, and inspection.1.1 This guide covers information for designing permanent steel doublers for surface ships that are not classed with any classification society, and not load line certified. It is not intended to supersede any classification or statutory requirements.1.2 This guide provides owners, operators, shipyards, and designers with information for designing and using doubler plates so that the damaged structure regains its original local strength.1.3 When the steel is to be welded a welding procedure suitable for the grade of steel and intended use or service is to be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.1.4 The values stated in metric units (SI) are to be regarded as the standard. The values given in parentheses (inch/pound) are provided for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Composite materials consist by definition of a reinforcement phase in a matrix phase. In addition, carbon-carbon composites often contain measurable porosity which interacts with the reinforcement and matrix. The composition and structure of the C-C composite are commonly tailored for a specific application with detailed performance requirements. The tailoring involves the selection of the reinforcement fibers (composition, properties, morphology, etc), the matrix (composition, properties, and morphology), the composite structure (component fractions, reinforcement architecture, porosity structure, microstructure, etc.), and the fabrication conditions (forming, assembly, forming, densification, finishing, etc.). The final engineering properties (physical, mechanical, thermal, electrical, etc.) can be tailored across a broad range with major directional anisotropy in the properties.4.2 Specifications for specific C-C composite components covering materials, material processing, and fabrication procedures are developed to provide a basis for fabricating reproducible and reliable structures. Designer/users/producers have to write C-C composite specifications for specific applications with well-defined composition, structure, properties and processing requirements. But with the extensive breadth of selection in composition, structure, and properties in C-C composites, it is virtually impossible to write a "generic" composite specification applicable to any and all C-C composite applications that has the same type of structure and details of the commonly-used specifications for metal alloys. This guide is written to assist the designer/user/producer in developing a comprehensive and detailed material specification for a specific CMC application/component with a particular focus on nuclear applications.4.3 The purpose of this guide is to provide guidance on how to specify the constituents, the structure, the desired engineering properties (physical, chemical, mechanical, durability, etc), methods of testing, manufacturing process requirements, the quality assurance requirements, and traceability for C-C composites for nuclear reactor applications. The resulting specification may be used for the design, production, evaluation, and qualification of C-C composites for structures in nuclear reactors.4.4 The guide is applicable to C-C composites with flat plate, rectangular bar, round rod, and round tube geometries.4.5 This guide may also be applicable to the development of specifications for C-C composites used for other structural applications, discounting the nuclear-specific chemical purity and irradiation behavior requirements.1.1 This document is a guide to preparing material specifications for fiber reinforced carbon-carbon (C-C) composite structures (flat plates, rectangular bars, round rods, and tubes) manufactured specifically for structural components in nuclear reactor core applications. The carbon-carbon composites consist of carbon/graphite fibers (from PAN, pitch, or rayon precursors) in a carbon/graphite matrix produced by liquid infiltration/pyrolysis and/or by chemical vapor infiltration.1.2 This guide provides direction and guidance for the development of a material specification for a specific C-C composite component or product for nuclear reactor applications. The guide considers composite constituents and structure, physical and chemical properties, mechanical properties, thermal properties, performance durability, methods of testing, materials and fabrication processing, and quality assurance. The C-C composite materials considered here would be suitable for nuclear reactor core applications where neutron irradiation-induced damage and dimensional changes are a significant design consideration. (1-4)21.3 The component specification is to be developed by the designer/purchaser/user. The designer/purchaser/user shall define and specify in detail any and all application-specific requirements for necessary design, manufacturing, and performance factors of the ceramic composite component. This guide for material specifications does not directly address component/product-specific issues, such as geometric tolerances, permeability, bonding, sealing, attachment, and system integration.1.4 This guide is specifically focused on C-C composite components and structures with flat panel, solid rectangular bar, solid round rod, or tubular geometries.1.5 This specification may also be applicable to C-C composites used for other structural applications discounting the nuclear-specific chemical purity and irradiation behavior factors.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is intended to establish the test protocol for decking materials and systems. This test method is intended to address a fire caused by exterior sources that involves the upper surface of the deck or structure.4.2 This test is a practical assessment of fire-test-response characteristics under a prescribed fire loading. This test method is a variation of Test Method E108.1.1 This test method determines the fire-test-response characteristics of deck structures attached to or in close proximity to primary structures. The burning brand exposures test is intended to determine the degradation modes of decking materials when exposed to a burning brand on the upper surface of a deck structure.1.2 The use of paints, coatings, stains, or other surface treatments for fire protection purposes are beyond the scope of this test method. This test method excludes the use of paints, stains, or coatings for this fire-test-response determination.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions.1.5 Fire testing of products and materials is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
61 条记录,每页 15 条,当前第 2 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页