微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The spiral contractometer, properly used, will give reproducible results (see 9.5) over a wide range of stress values. Internal stress limits with this method can be specified for use by both the purchaser and the producer of plated or electroformed parts.5.2 Plating with large tensile stresses will reduce the fatigue strength of a product made from high-strength steel. Maximum stress limits can be specified to minimize this. Other properties affected by stress include corrosion resistance, dimensional stability, cracking, and peeling.5.3 In control of electroforming solutions, the effects of stress are more widely recognized, and the control of stress is usually necessary to obtain a usable electroform. Internal stress limits can be determined and specified for production control.5.4 Internal stress values obtained by the spiral contractometer do not necessarily reflect the internal stress values found on a part plated in the same solution. Internal stress varies with many factors, such as coating thickness, preparation of substrate, current density, and temperature, as well as the solution composition. Closer correlation is achieved when the test conditions match those used to coat the part.1.1 This test method covers the use of the spiral contractometer for measuring the internal stress of metallic coatings as produced from plating solutions on a helical cathode. The test method can be used with electrolytic and autocatalytic deposits.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The deformation and end point of a cone corresponds to a certain heat-work condition due to the effects of time, temperature, and atmosphere.5.2 The precision of this test method is subject to many variables that are difficult to control. Therefore, an experienced operator may be necessary where PCE values are being utilized for specification purposes.5.3 PCE values are used to classify fireclay and high-alumina refractories.5.4 This is an effective method of identifying fireclay variations, mining control, and developing raw material specifications.5.5 Although not recommended, this test method is sometimes applied to materials other than fireclay and high alumina. Such practice should be limited to in-house laboratories and never be used for specification purposes.1.1 This test method covers the determination of the pyrometric cone equivalent (PCE) of fire clay, fireclay brick, high-alumina brick, and silica fire clay refractory mortar by comparison of test cones with standard pyrometric cones under the conditions prescribed in this test method.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.2.1 Exceptions—Certain weights are in SI units with inch-pound in parentheses. Also, certain figures have SI units without parentheses. These SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D1293-18 Standard Test Methods for pH of Water Active 发布日期 :  1970-01-01 实施日期 : 

5.1 The pH of water is a critical parameter affecting the solubility of trace minerals, the ability of the water to form scale or to cause metallic corrosion, and the suitability of the water to sustain living organisms. It is a defined scale, based on a system of buffer solutions2 with assigned values. In pure water at 25°C, pH 7.0 is the neutral point, but this varies with temperature and the ionic strength of the sample.5 Pure water in equilibrium with air has a pH of about 5.5, and most natural uncontaminated waters range between pH 6 and pH 9.1.1 These test methods cover the determination of pH by electrometric measurement using the glass electrode as the sensor. Two test methods are given as follows:  SectionsTest Method A—Precise Laboratory Measurement  8 to 15Test Method B—Routine or Continuous Measurement 16 to 241.2 Test Method A covers the precise measurement of pH in water utilizing at least two of seven standard reference buffer solutions for instrument standardization.1.3 Test Method B covers the routine measurement of pH in water and is especially useful for continuous monitoring. Two buffers are used to standardize the instrument under controlled parameters, but the conditions are somewhat less restrictive than those in Test Method A. For on-line measurement, also see Test Method D6569 which provides more detail.1.4 Both test methods are based on the pH scale established by NIST (formerly NBS) Standard Reference Materials.21.5 Neither test method is considered to be adequate for measurement of pH in water whose conductivity is less than about 5 μS/cm. Refer to Test Methods D5128 and D5464.1.6 Precision and bias data were obtained using buffer solutions only. It is the user's responsibility to assure the validity of these test methods for untested types of water.1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D2510-22 Standard Test Method for Adhesion of Solid Film Lubricants Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Effective solid film lubricant coatings must adhere to surfaces to provide adequate lubrication in applications with restricted access where fluid lubricants cannot easily be replenished. Loss of coating adhesion results in metal to metal contact causing significant wear of contacting surfaces. Adhesion is critical to the performance of the solid film lubricant. Examples of solid film lubricant applications include fasteners, bearings and sliding members in automotive, aircraft, and aerospace hardware.5.2 This test method is intended to determine the adhesion of solid film lubricant coatings when submitted to contact with water and other fluids. Results of this test provide an indication of the suitability of the lubricant coating in applications where contact with water or other fluids is likely.1.1 This test method2 covers the measurement of the adhesion characteristics of dry solid film lubricants.1.2 The values stated in SI units are to be regarded as standard.1.2.1 Exception—The values given in parentheses are provided for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D2901-99 Standard Test Method for Cement Content of Freshly Mixed Soil-Cement (Withdrawn 2006) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This test method covers determination of the cement content of samples of freshly-mixed soil-cement. 1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Products are exposed to complex dynamic stresses in the transportation environment. The determination of the resonant frequencies of the product may aid the packaging designer in determining the proper packaging system to provide adequate protection for the product, as well as providing an understanding of the complex interactions between the components of the product as they relate to expected transportation vibration inputs.1.1 These test methods cover the determination of resonances of unpackaged products and components of unpackaged products by means of vertical linear motion at the surface on which the product is mounted for test. Two alternate test methods are presented:Test Method A—Resonance Search Using Sinusoidal Vibration, andTest Method B—Resonance Search Using Random Vibration.NOTE 1: The two test methods are not necessarily equivalent and may not produce the same results. It is possible that tests using random vibration may be more representative of the transport environment and may be conducted more quickly than sine tests.1.2 This information may be used to examine the response of products to vibration for product design purposes, or for the design of a container or interior package that will minimize transportation vibration inputs at these critical frequencies, when these products resonances are within the expected transportation environment frequency range. Since vibration damage is most likely to occur at product resonant frequencies, these resonances may be thought of as potential product fragility points.1.3 Information obtained from the optional dwell test methods may be used to assess the fatigue characteristics of the resonating components and for product modification. This may become necessary if the response of a product would require design of an impractical or excessively costly shipping container.1.4 These test methods do not necessarily simulate the vibration effects that the product will encounter in its operational or in-use environment. Other, more suitable test procedures should be used for this purpose.1.5 Test levels given in these test methods represent the correlation of the best information currently available from research investigation and from experience in the use of these test methods. If more applicable or accurate data are available, they should be substituted.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 6 for specific precautionary statements.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Identification of a brackish water, seawater, or brine is determined by comparison of the concentrations of their dissolved constituents. The results are used to evaluate the origin of the water, determine if it is a possible pollutant or determine if it is a commercial source of a valuable constituent such as iodine or bromine.1.1 These test methods2 cover the determination of soluble iodide and bromide ions, or both, in brackish water, seawater, and brines. Four test methods are given as follows:1.1.1 Test Method A for both Iodide and Bromide Ions—Volumetric, for concentrations from 0.2 mg/L to 2000 mg/L iodide and from 5 mg/L to 6500 mg/L bromide (Sections 7 – 15).1.1.2 Test Method B for Iodide Ion—Colorimetric, for concentrations from 0.2 mg/L to 2000 mg/L iodide (Sections 16 – 25).1.1.3 Test Method C for Iodide Ion—Selective electrode, for concentrations from 1 mg/L to 2000 mg/L iodide (Sections 26 – 34).1.1.4 Test Method D for Bromide Ion—Colorimetric, for concentrations from 40 mg/L to 6500 mg/L bromide (Sections 35 – 44).1.2 Test Method A is intended for use on all brackish waters, seawaters, and brines that contain appreciable amounts of iodide or bromide ions or both. Test Methods B, C, and D, because of their rapidity and sensitivity, are recommended for the analysis of brackish waters, seawaters, and brines in the field and in the laboratory.1.3 Samples containing from 0.2 mg/L to 2000 mg/L of iodide or 5 mg/L to 6500 mg/L of bromide may be analyzed by these methods.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 20.2 and 39.2.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method provides a simple means of characterizing the important rheological properties and viscosity of thermoplastic polymers using very small amounts of material (approximately 25 to 50 mm in diameter by 1 to 3 mm in thickness ... approximately 3 to 5 g). Data are generally used for quality control, research and development, and establishment of optimum processing conditions.5.2 Dynamic mechanical testing provides a sensitive method for determining molten polymer properties by measuring the elastic and loss moduli as a function of frequency, strain, temperature, or time. Plots of viscosity, storage, and loss moduli, and tan delta as a function of the aforementioned process parameters provide graphical representation indicative of molecular weight, molecular weight distribution, effects of chain branching, and melt-processability for specified conditions.5.2.1 Observed data are specific to experimental conditions. Reporting in full (as described in this test method) the conditions under which the data was obtained is essential to assist users with interpreting the data an reconciling apparent or perceived discrepancies.5.3 Values obtained in this test method can be used to assess the following:5.3.1 Complex viscosity of the polymer melt as a function of dynamic oscillation,5.3.2 Processing viscosity, minimum as well as changes in viscosity as a function of experimental parameters,5.3.3 Effects of processing treatment,5.3.4 Relative polymer behavioral properties, including viscosity and damping, and5.3.5 Effects of formulation additives that might affect processability or performance.5.4 Before proceeding with this test method, refer to the specification for the material being tested. Any test specimen preparation, conditioning, dimensions, or testing parameters, or combination thereof, covered in the relevant ASTM materials specification shall take precedence over those mentioned in the test method. If there are no relevant ASTM material specifications, then the default conditions apply.1.1 This test method outlines the use of dynamic mechanical instrumentation in determining and reporting the rheological properties of thermoplastic resins and other types of molten polymers. The method is useful for determining the complex viscosity and other significant viscoelastic characteristics of such materials as a function of frequency, strain amplitude, temperature, and time. It is known that fillers and other additives influence rheological properties.1.2 It incorporates a laboratory test method for determining the relevant rheological properties of a polymer melt subjected to various oscillatory deformations on an instrument of the type commonly referred to as a mechanical or dynamic spectrometer.1.3 This test method is intended to provide a means of determining the rheological properties of molten polymers, such as thermoplastics and thermoplastic elastomers over a range of temperatures by nonresonant, forced-vibration techniques. Plots of modulus, viscosity, and tan delta as a function of dynamic oscillation (frequency), strain amplitude, temperature, and time are indicative of the viscoelastic properties of a molten polymer.1.4 This test method is valid for a wide range of frequencies, typically from 0.01 Hz to 100 Hz.1.5 This test method is intended for homogenous and heterogeneous molten polymeric systems and composite formulations containing chemical additives, including fillers, reinforcements, stabilizers, plasticizers, flame retardants, impact modifiers, processing aids, and other important chemical additives often incorporated into a polymeric system for specific functional properties, and which could affect the processability and functional performance. These polymeric material systems have molten viscosities typically less than 106 Pa·s (107 poise).1.6 Test data obtained by this test method are relevant and appropriate for use in engineering design.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This test method is equivalent to ISO 6721, Part 10.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This test method is designed to measure the load required to tear leather through two holes in the test specimen. Tanners and leather buyers have found that this test gives an indication of the resistance of leather to tearing. It is of particular value in estimating the durability of leather to withstand tearing stresses encountered in the manufacture of shoes, garments, and upholstered products. The thickness of the specimen and direction of tear relative to the backbone will affect the uniformity of the test results. This test method may not apply when the conditions of the test employed differ widely from those specified in the test method.1.1 This test method is intended for use in determining the stitch tearing resistance of leather using a double hole tear. It is particularly applicable to lightweight leathers. This test method does not apply to wet blue.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Results of this test method are used to predict displacements in rock mass caused by loads from a structure or from underground construction for the load range that the device can apply. It is one of several tests that should be performed.5.2 Because the jack can apply directed loads, this test method can be performed to provide an estimate of anisotropy.5.3 In theory, the analysis of test data is straight forward; the modulus estimate requires a record of applied hydraulic pressure versus borehole diameter change, and a knowledge of the rock's Poisson's ratio. In practice, the above procedure, using the original theoretical formula, frequently has resulted in computing a material modulus that was demonstrably too low.5.4 For analyzing the test data it is assumed that the rock mass is linearly elastic, isotropic, and homogeneous. Within these assumptions, this test method can provide useful data for rock masses for which equivalent continuous properties cannot be found or estimated.NOTE 1: Notwithstanding the statements on precision and bias contained in this test method; the precision of this test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D3740 does not in itself assure reliable testing. Reliable testing depends on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the estimation of in situ modulus of a rock mass at various depths and orientations. Information on time-dependent deformation may also be obtained.1.2 This test method covers testing in an N size drill hole and is more relevant to a borehole jack device designed for “hard rock” than for soft rock.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3.1 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Procedure A is designed to produce moisture diffusion material property data that may be used as follows:5.1.1 To determine approximate exposure times for coupon conditioning in Procedures B-E, Y, and Z;5.1.2 As input to moisture prediction analysis computer codes; or5.1.3 For making qualitative decisions on material selection or performance under environmental exposure to various forms of moisture.5.2 Procedures B-E are designed to condition test coupons to a specified environmental condition or equilibrium state prior to other material property testing (including, but not limited to, mechanical testing).5.3 Procedures Y-Z are designed to determine the loss of moisture content due to removal of a test coupon from the conditioning chamber (such as for strain gauge bonding) or due to heating of the test coupon prior to and during mechanical loading.5.4 A single pair of tests on thin and thick specimens using Procedure A provides the moisture diffusivity constant, Dz, and the moisture equilibrium content, Mm, at the given moisture exposure level and temperature. Multiple tests at differing temperatures are required to establish the dependence of Dz on temperature. Multiple tests at differing moisture exposure levels are required to establish the dependence of Mm on moisture exposure level.NOTE 1: For many polymer matrix composites, the moisture diffusivity is usually only weakly related to relative humidity and is often assumed to be a function only of temperature, usually following an Arrhenius-type exponential relation with inverse absolute temperature. For many of these materials, moisture equilibrium content is only weakly related to temperature and is usually assumed to be a function only of relative humidity (1).5.5 Vapor-exposure testing shall be used to condition the specimen when the in-service environmental condition is a vapor such as humid air. Immersion in a liquid bath should be used to simulate vapor exposure only when apparent absorption properties are desired for qualitative purposes. Properties determined in the latter manner shall be reported as apparent properties.NOTE 2: For many polymer matrix composites, the moisture absorption properties under atmospheric humid conditions are generally not equivalent to exposure either to liquid immersion or to pressurized steam. These latter environments may have different material diffusion characteristics.1.1 This test method covers a procedure for the determination of moisture absorption or desorption properties in the through-the-thickness direction for single-phase Fickian solid materials in flat or curved panel form. Also covered are procedures for conditioning test coupons prior to use in other test methods; either to an essentially moisture-free state, to equilibrium in a standard laboratory atmosphere environment, or to equilibrium in a non-laboratory environment. Also included are procedures for determining the moisture loss during elevated temperature testing, as well as moisture loss resulting from thermal exposure after removal from the conditioning environment, such as during strain gauge bonding. While intended primarily for laminated polymer matrix composite materials, these procedures are also applicable to other materials that satisfy the assumptions of 1.2.1.2 The calculation of the through-the-thickness moisture diffusivity constant in Procedure A assumes a single-phase Fickian material with constant moisture absorption properties through the thickness of the specimen. The validity of the equations used in Procedure A for evaluating the moisture diffusivity constant in a material of previously unknown moisture absorption behavior is uncertain prior to the test, as the test results themselves determine if the material follows the single-phase Fickian diffusion model. A reinforced polymer matrix composite material tested below its glass-transition temperature typically meets this requirement, although two-phase matrices such as toughened epoxies may require a multi-phase moisture absorption model. While the test procedures themselves may be used for multi-phase materials, the calculations used to determine the moisture diffusivity constant in Procedure A are applicable only to single-phase materials. Other examples of materials and test conditions that may not meet the requirements are discussed in Section 6.1.3 The evaluation by Procedure A of the moisture equilibrium content material property does not assume, and is therefore not limited to, single-phase Fickian diffusion behavior.1.4 The procedures used by this test method may be performed, and the resulting data reduced, by suitable automatic equipment.1.5 This test method is consistent with the recommendations of CMH-17 Rev G (1),2 which describes the desirable attributes of a conditioning and moisture property determination procedure.1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6.1 Within the text, the inch-pound units are shown in brackets.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Benzene is a compound that endangers health, and the concentration is limited by environmental protection agencies to produce a less toxic gasoline.5.2 This test method is fast, simple to run, and inexpensive.5.3 This test method is applicable for quality control in the production and distribution of spark-ignition engine fuels.1.1 This test method covers the determination of the percentage of benzene in spark-ignition engine fuels. It is applicable to concentrations from 0.1 % to 5 % by volume.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The grain stability of calcined petroleum coke determines the resistance to breakdown of + 4 mm particles used in the manufacture of carbon anodes for use in the reduction process of aluminum.5.2 Calcined petroleum cokes have to be relatively easy to grind for fines production but strong enough to withstand forming pressures and thermal stresses occurring when the anodes are used in the reduction process.1.1 This test method covers a laboratory vibration mill method for the determination of the grain stability of calcined petroleum coke for the manufacture of carbon products used in the smelting of aluminum. Calcined petroleum coke with poor mechanical strength may become degraded during mixing. Poor grain stability will affect the grain size and may result in poor quality of baked blocks.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This method for investigating creep rupture of FRP bars is intended for use in laboratory tests in which the principal variable is the size or type of FRP bars, magnitude of applied force, and duration of force application. Unlike steel reinforcing bars or prestressing tendons subjected to significant sustained stress, creep rupture of FRP bars may take place below the static tensile strength. Therefore, the creep rupture strength is an important factor when determining acceptable stress levels in FRP bars used as reinforcement or tendons in concrete members designed to resist sustained loads. Creep rupture strength varies according to the type of FRP bars used.5.2 This test method measures the creep rupture time of FRP bars under a given set of controlled environmental conditions and force ratios.5.3 This test method is intended to determine the creep rupture data for material specifications, research and development, quality assurance, and structural design and analysis. The primary test result is the million-hour creep rupture capacity of the specimen.5.4 Creep properties of reinforced, post-tensioned, or prestressed concrete structures are important to be considered in design. For FRP bars used as reinforcing bars or tendons, the creep rupture shall be measured according to the method given herein.1.1 This test method outlines requirements for tensile creep rupture testing of fiber reinforced polymer matrix (FRP) composite bars commonly used as tensile elements in reinforced, prestressed, or post-tensioned concrete.1.2 Data obtained from this test method are used in design of FRP reinforcements under sustained loading. The procedure for calculating the one-million hour creep-rupture capacity is provided in Annex A1.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a means for obtaining useful in-service fluid analysis properties in the field. It is not to be confused with laboratory or portable FTIR devices which provide measurements per the existing Test Methods listed in 4.1.1.1. Each of these monitored properties has been shown over time to indicate either contamination in the fluid system or a particular breakdown modality of the fluid, which is critical information to assess the health of the fluid as well as the machinery. By utilizing the field device, it is possible for those operating machinery, in locations and situations where it is not practical to gather a sample for the laboratory, to obtain quality in-service fluid analysis. This may be due to the need to have an analysis done in real-time, on-the-spot to maximize the operational hours of equipment, or to have the analysis performed at a location where no laboratory analysis is available.1.1 This test method describes the use of a grating spectrometer to analyze properties of an in-service fluid sample which are indicative of the status of that fluid and related machinery.1.2 This test method provides a means for the assessment of in-service fluid properties using infrared spectroscopy. It describes a methodology for sampling, performing analysis, and providing key in-service fluid properties with a self-contained unit that is meant for field use. It provides analysis of in-service fluids at any stage of their useful life, including newly utilized fluid.1.3 In particular, these key in-service fluid properties include oxidation, nitration, sulfation, soot, and antiwear additives. They are applicable for hydrocarbon type (API Group I-IV) fluids from machinery lubricants, including reciprocating engine oils, turbine oils, hydraulic oils, and gear oils.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4.1 Exception—The unit for wavenumbers is in cm-1.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
6648 条记录,每页 15 条,当前第 1 / 444 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页