微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 819元 / 折扣价: 697

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 689元 / 折扣价: 586

在线阅读 收 藏

5.1 This test method is part of an overall suite of related test methods that provide repeatable measures of robotic system mobility and remote operator proficiency. This continuous pitch/roll ramp terrain specifically challenges robotic system locomotion, suspension systems to maintain traction, rollover tendencies, self-righting in complex terrain (if necessary), chassis shape variability (if available), and remote situational awareness by the operator. As such, it can be used to represent modest outdoor terrain complexity or indoor debris within confined areas.5.2 The overall size of the terrain apparatus can vary to provide different constraints depending on the typical obstacle spacing of the intended deployment environment. For example, the terrain with containment walls can be sized to represent repeatable complexity within bus, train, or plane aisles; dwellings with hallways and doorways; relatively open parking lots with spaces between cars; or unobstructed terrains.5.3 The test apparatuses are low cost and easy to fabricate so they can be widely replicated. The procedure is also simple to conduct. This eases comparisons across various testing locations and dates to determine best-in-class systems and operators.5.4 Evaluation—This test method can be used in a controlled environment to measure baseline capabilities. It can also be embedded into operational training scenarios to measure degradation due to uncontrolled variables in lighting, weather, radio communications, GPS accuracy, etc.5.5 Procurement—This test method can be used to identify inherent capability trade-offs in systems, make informed purchasing decisions, and verify performance during acceptance testing. This aligns requirement specifications and user expectations with existing capability limits.5.6 Training—This test method can be used to focus operator training as a repeatable practice task or as an embedded task within training scenarios. The resulting measures of remote operator proficiency enable tracking of perishable skills over time, along with comparisons of performance across squads, regions, or national averages.5.7 Innovation—This test method can be used to inspire technical innovation, demonstrate break-through capabilities, and measure the reliability of systems performing specific tasks within an overall mission sequence. Combining or sequencing multiple test methods can guide manufacturers toward implementing the combinations of capabilities necessary to perform essential mission tasks.1.1 This test method is intended for remotely operated ground robots operating in complex, unstructured, and often hazardous environments. It specifies the apparatuses, procedures, and performance metrics necessary to measure the capability of a robot to traverse complex terrains in the form of continuous pitch/roll ramps. This test method is one of several related mobility tests that can be used to evaluate overall system capabilities.1.2 The robotic system includes a remote operator in control of all functionality, so an onboard camera and remote operator display are typically required. Assistive features or autonomous behaviors that improve the effectiveness or efficiency of the overall system are encouraged.1.3 Different user communities can set their own thresholds of acceptable performance within this test method for various mission requirements.1.4 Performing Location—This test method may be performed anywhere the specified apparatuses and environmental conditions can be implemented.1.5 Units—The International System of Units (SI Units) and U.S. Customary Units (Imperial Units) are used throughout this document. They are not mathematical conversions. Rather, they are approximate equivalents in each system of units to enable use of readily available materials in different countries. This avoids excessive purchasing and fabrication costs. The differences between the stated dimensions in each system of units are insignificant for the purposes of comparing test method results, so each system of units is separately considered standard within this test method.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method allows for the measurement of the torque retention properties of container/continuous thread closure systems of various designs, materials, and manufacture, and is suitable for packaging development and engineering evaluation.5.2 This test method can be used for the evaluation of container/continuous thread closure systems under controlled conditions (where the application torque is known and the applied downward force to the closure is zero).5.3 This test method measures torque retention properties of container/continuous thread closure systems with the use of a non-automated, spring torque-meter (with either a dial indicator or a digital readout) or a torque wrench.1.1 These test methods evaluate the torque retention of continuous thread closures on containers, with matching finishes, for predetermined environmental conditions over time.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.NOTE 1: The SI unit system is the recommended system.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method produces a measure of retroreflective efficiency (coefficient of retroreflected luminance, RL-2) for a pavement marking system under conditions of continuous wetting. The test result depends on factors such as the pavement marking binder and optic materials, their application, wear from traffic and plowing, wetting rate, and road grade and cross slope.5.2 The measured retroreflective efficiency under conditions of continuous wetting may be used to characterize the properties of a pavement marking on the road as water is continuously falling on it. The retroreflective efficiency of the marking under conditions of continuous wetting is almost always different than under dry conditions.5.3 The wetting rate of 2 in./h represents the upper limit of what is meteorologically classified as heavy rainfall. Rainfall rates above 2 in./h are classified as extreme or violent, and are sometimes associated with weather such as tropical storms.5.4 The retroreflectivity of pavement markings degrades with traffic wear and requires periodic measurement to ensure that the coefficient of retroreflected luminance under continuous wetting meets requirements and provides adequate visibility for nighttime drivers.5.5 The continuous wetting rate as well as the roadway grade and cross slope impact the results of this test method. The user shall measure and report the rate used for testing.5.6 The roadway grade and cross slope adjacent to the measurement area impact the results of this test method. A digital level (inclinometer) can be used to quickly measure grade and cross slope.5.7 Results obtained using this test method should not be the sole basis for specifying and assessing the wet retroreflective effectiveness of pavement marking systems. Users should complement the results of this test method with other evaluation results, such as nighttime visual inspections.1.1 This test method covers a measurement of the wet retroreflective (RL-2) properties of horizontal pavement marking materials, such as traffic stripes and road surface symbols. A standardized method utilizing a standardized continuous wetting device and a portable retroreflectometer is described to obtain measurements of the wet retroreflective properties of horizontal pavement markings.1.2 Retroreflective performance obtained with this test in a standardized condition of continuous wetting does not necessarily relate to how markings perform in all conditions of natural rain.NOTE 1: Test Method E2177 may be used to describe the retroreflective properties of pavement markings in conditions of wetness, such as after a period of rain.1.3 This test method is suitable for measurements made in the laboratory and in the field when the necessary controls and precautions are followed.1.4 This test method specifies the use of external beam retroreflectometers conforming to Test Method E1710.2 The entrance and observation angles required of the retroreflectometer in this test method are commonly referred to as “30 meter geometry.”21.5 The test method excludes the effects of rain between the vehicle and the marking.1.6 Results obtained using this test method should not be the sole basis for specifying and assessing the wet retroreflective effectiveness of pavement marking systems. Users should complement the results of this test method with other evaluation results, such as nighttime visual inspections.1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites (CFCCs) are generally characterized by fine-grain sized (<50 μm) matrices and ceramic fiber reinforcements. In addition, continuous fiber-reinforced glass (amorphous) matrix composites can also be classified as CFCCs. Uniaxially loaded compressive strength tests provide information on mechanical behavior and strength for a uniformly stressed CFCC.4.3 Generally, ceramic and ceramic matrix composites have greater resistance to compressive forces than tensile forces. Ideally, ceramics should be compressively stressed in use, although engineering applications may frequently introduce tensile stresses in the component. Nonetheless, compressive behavior is an important aspect of mechanical properties and performance. The compressive strength of ceramic and ceramic composites may not be deterministic. Therefore, test a sufficient number of test specimens to gain an insight into strength distributions.4.4 Compression tests provide information on the strength and deformation of materials under uniaxial compressive stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior that may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, etc.) that may be influenced by testing mode, testing rate, effects of processing or combination of constituent materials, or environmental influences. Some of these effects may be consequences of stress corrosion or sub-critical (slow) crack growth which can be minimized by testing at sufficiently rapid rates as outlined in this test method.4.5 The results of compression tests of test specimens fabricated to standardized dimensions from a particulate material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size product or its in-service behavior in different environments.4.6 For quality control purposes, results derived from standardized compressive test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.7 The compressive behavior and strength of a CFCC are dependent on, and directly related to, the material. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, are recommended.1.1 This test method covers the determination of compressive strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at ambient temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendixes. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Compressive strength, as used in this test method, refers to the compressive strength obtained under monotonic uniaxial loading, where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D) or other multi-directional reinforcements. In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, 3D, and other multi-directional continuous fiber reinforcements. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Acoustic emission examination of a structure requires application of a mechanical or thermal stimulus. In this case, the system operating conditions provide the stimulation. During operation of the pressurized system, AE from active discontinuities such as cracks or from other acoustic sources such as leakage of high-pressure, high-temperature fluids can be detected by an instrumentation system using sensors mounted on the structure. The sensors are acoustically coupled to the surface of the structure by means of a couplant material or pressure on the interface between the sensing device and the structure. This facilitates the transmission of acoustic energy to the sensor. When the sensors are excited by acoustic emission energy, they transform the mechanical excitations into electrical signals. The signals from a detected AE source are electronically conditioned and processed to produce information relative to source location and other parameters needed for AE source characterization and evaluation.5.2 AE monitoring on a continuous basis is a currently available method for continuous surveillance of a structure to assess its continued integrity. The use of AE monitoring in this context is to identify the existence and location of AE sources. Also, information is provided to facilitate estimating the significance of the detected AE source relative to continued pressure system operation.5.3 Source location accuracy is influenced by factors that affect elastic wave propagation, by sensor coupling, and by signal processor settings.5.4 It is possible to measure AE and identify AE source locations of indications that cannot be detected by other NDT methods, due to factors related to methodological, material, or structural characteristics.5.5 In addition to immediate evaluation of the AE sources, a permanent record of the total data collected (AE plus pressure system parameters measured) provides an archival record which can be re-evaluated.1.1 This practice provides guidelines for continuous monitoring of acoustic emission (AE) from metal pressure boundaries in industrial systems during operation. Examples are pressure vessels, piping, and other system components which serve to contain system pressure. Pressure boundaries other than metal, such as composites, are specifically not covered by this document.1.2 The functions of AE monitoring are to detect, locate, and characterize AE sources to provide data to evaluate their significance relative to pressure boundary integrity. These sources are those activated during system operation, that is, no special stimulus is applied to produce AE. Other methods of nondestructive testing (NDT) may be used, when the pressure boundary is accessible, to further evaluate or substantiate the significance of detected AE sources.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standards.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Detection and location of AE sources in weldments during fabrication may provide information related to the integrity of the weld. Such information may be used to direct repair procedures on the weld or as a guide for application of other nondestructive evaluation (NDE) methods. A major attribute of applying AE for in-process monitoring of welds is the ability of the method to provide immediate real-time information on weld integrity. This feature makes the method useful to lower weld costs by repairing defects at the most convenient point in the production process. The AE activity from discontinuities in the weldment is stimulated by the thermal stresses from the welding process. The AE activity resulting from this stimulation is detected by AE sensors in the vicinity of the weldment, which convert the acoustic waves into electronic signals. The AE instrumentation processes signals and provides means for immediate display or indication of AE activity and for permanent recordings of the data.4.2 Items to be considered in preparation and planning for monitoring should include but not be limited to the following:4.2.1 Description of the system or object to be monitored or examined,4.2.2 Extent of monitoring, that is, entire weld, cover passes only, and so forth,4.2.3 Limitations or restrictions on the sensor mounting procedures, if applicable,4.2.4 Performance parameters to be established and maintained during the AE system verification procedure (sensitivity, location accuracy, and so forth),4.2.5 Maximum time interval between AE system verification checks,4.2.6 Performance criteria for purchased equipment,4.2.7 Requirements for permanent records of the AE response, if applicable,4.2.8 Content and format of test report, if required, and4.2.9 Operator qualification and certification, if required.1.1 This practice provides recommendations for acoustic emission (AE) monitoring of weldments during and immediately following their fabrication by continuous welding processes.1.2 The procedure described in this practice is applicable to the detection and location of AE sources in weldments and in their heat-affected zone during fabrication, particularly in those cases where the time duration of welding is such that fusion and solidification take place while welding is still in progress.1.3 The effectiveness of acoustic emission to detect discontinuities in the weldment and the heat-affected zone is dependent on the design of the AE system, the AE system verification procedure, the weld process, and the material type. Materials that have been monitored include low-carbon steels, low-alloy steels, stainless steels, and some aluminum alloys. The system performance must be verified for each application by demonstrating that the defects of concern can be detected with the desired reliability.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites generally characterized by crystalline matrices and ceramic fiber reinforcements are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and elevated-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate strengths of monolithic advanced ceramics, the nonuniform stress distribution of the flexure test specimen, in addition to dissimilar mechanical behavior in tension and compression for CFCCs, leads to ambiguity of interpretation of strength results obtained from flexure tests for CFCCs. Uniaxially loaded tensile strength tests provide information on mechanical behavior and strength for a uniformly stressed material.4.3 Unlike monolithic advanced ceramics that fracture catastrophically from a single dominant flaw, CFCCs generally experience “graceful” (that is, non-catastrophic, ductile-like stress-strain behavior) fracture from a cumulative damage process. Therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially loaded tensile test may not be as significant a factor in determining the ultimate strengths of CFCCs. However, the need to test a statistically significant number of tensile test specimens is not obviated. Therefore, because of the probabilistic nature of the strengths of the brittle fibers and matrices of CFCCs, a sufficient number of test specimens at each testing condition is required for statistical analysis and design. Studies to determine the influence of test specimen volume or surface area on strength distributions for CFCCs have not been completed. It should be noted that tensile strengths obtained using different recommended tensile test specimen geometries with different volumes of material in the gage sections may be different due to these volume differences.4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior that may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, and so forth) that may be influenced by testing mode, testing rate, effects of processing or combinations of constituent materials, environmental influences, or elevated temperatures. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth that can be minimized by testing at sufficiently rapid rates as outlined in this test method.4.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments or various elevated temperatures.4.6 For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for the particular primary processing conditions and post-processing heat treatments.4.7 The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is recommended.1.1 This test method covers the determination of tensile strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendixes. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, temperature control, temperature gradients, and data collection and reporting procedures are addressed. Tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial loading, where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D) or other multi-directional reinforcements. In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, 3D, and other multi-directional continuous fiber reinforcements. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 This practice may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites are generally characterized by crystalline matrices and ceramic fiber reinforcements. These materials are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and high-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate the mechanical behavior of monolithic advanced ceramics, the nonuniform stress distribution in a flexural test specimen in addition to dissimilar mechanical behavior in tension and compression for CFCCs leads to ambiguity of interpretation of test results obtained in flexure for CFCCs. Uniaxially loaded tensile tests provide information on mechanical behavior for a uniformly stressed material.4.3 The cyclic fatigue behavior of CFCCs can have appreciable nonlinear effects (for example, sliding of fibers within the matrix) which may be related to the heat transfer of the specimen to the surroundings. Changes in test temperature, frequency, and heat removal can affect test results. It may be desirable to measure the effects of these variables to more closely simulate end-use conditions for some specific application.4.4 Cyclic fatigue by its nature is a probabilistic phenomenon as discussed in STP 91A (1) and STP 588 (2).4 In addition, the strengths of the brittle matrices and fibers of CFCCs are probabilistic in nature. Therefore, a sufficient number of test specimens at each testing condition is required for statistical analysis and design, with guidelines for sufficient numbers provided in STP 91A (1), STP 588 (2), and Practice E739. Studies to determine the influence of test specimen volume or surface area on cyclic fatigue strength distributions for CFCCs have not been completed. The many different tensile test specimen geometries available for cyclic fatigue testing may result in variations in the measured cyclic fatigue behavior of a particular material due to differences in the volume of material in the gage section of the test specimens.4.5 Tensile cyclic fatigue tests provide information on the material response under fluctuating uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, matrix microcracking, fiber/matrix debonding, delamination, cyclic fatigue crack growth, etc.)4.6 Cumulative damage due to cyclic fatigue may be influenced by testing mode, testing rate (related to frequency), differences between maximum and minimum force (R or Α), effects of processing or combinations of constituent materials, environmental influences (including test environment and pre-test conditioning), or combinations thereof. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth which can be difficult to quantify. Other factors which may influence cyclic fatigue behavior are: matrix or fiber material, void or porosity content, methods of test specimen preparation or fabrication, volume percent of the reinforcement, orientation and stacking of the reinforcement, test specimen conditioning, test environment, force or strain limits during cycling, wave shapes (that is, sinusoidal, trapezoidal, etc.), and failure mode of the CFCC.4.7 The results of cyclic fatigue tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the cyclic fatigue behavior of the entire, full-size end product or its in-service behavior in different environments.4.8 However, for quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.9 The cyclic fatigue behavior of a CFCC is dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. There can be significant damage in the CFCC test specimen without any visual evidence such as the occurrence of a macroscopic crack. This can result in a loss of stiffness and retained strength. Depending on the purpose for which the test is being conducted, rather than final fracture, a specific loss in stiffness or retained strength may constitute failure. In cases where fracture occurs, analysis of fracture surfaces and fractography, though beyond the scope of this practice, is recommended.1.1 This practice covers the determination of constant-amplitude, axial tension-tension cyclic fatigue behavior and performance of continuous fiber-reinforced advanced ceramic composites (CFCCs) at ambient temperatures. This practice builds on experience and existing standards in tensile testing CFCCs at ambient temperatures and addresses various suggested test specimen geometries, specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates and frequencies, allowable bending, and procedures for data collection and reporting. This practice does not apply to axial cyclic fatigue tests of components or parts (that is, machine elements with nonuniform or multiaxial stress states).1.2 This practice applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: uni-directional (1-D), bi-directional (2-D), and tri-directional (3-D) or other multi-directional reinforcements. In addition, this practice may also be used with glass (amorphous) matrix composites with 1-D, 2-D, 3-D, and other multi-directional continuous fiber reinforcements. This practice does not directly address discontinuous fiber-reinforced, whisker-reinforced or particulate-reinforced ceramics, although the methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers grades of zinc alloys, commonly known as continuous galvanizing grade (CGG) alloys that contain aluminum, or aluminum and lead and that are used in continuous hot-dip galvanizing of steel sheet. CGG alloy shall be tested and conform to the chemical composition requirements as determined by chemical analysis on samples taken. CGG alloy castings shall be free of undue surface oxide, adhering foreign matter, and any flash that would interfere with handling and use. Samples obtained during casting, drilling or sawing shall be analyzed individually and the average of the individual determinations for the samples from the lot shall be reported as the analysis of the lot.1.1 This specification covers grades of zinc alloys, commonly known as Continuous Galvanizing Grade (CGG) alloys that contain aluminum, or aluminum and lead, that are used in continuous hot-dip galvanizing of steel sheet. The compositions for CGG grades made from primary zinc are shown in Table 1. Exceptions for grades made from secondary zinc are found in footnote C.1.2 CGG alloys specified in Specification B852 are used in continuous hot-dip galvanizing of steel sheet to produce product, as specified in Specification A653/A653M.1.3 Other alloy compositions not included in Specification B852, and as may be agreed upon between the producer and the user, may be used for continuous galvanizing.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Most oxides of nitrogen are formed during high-temperature combustion. The U.S. Environmental Protection Agency (EPA) has set primary and secondary air quality standards for NO2 that are designed to protect the public health and the public welfare (40 CFR, Part 50).5.2 Oxides of nitrogen are generated by many industrial processes that can result in employee exposures. These are regulated by the Occupational Safety and Health Administration (OSHA), which has promulgated exposure limits for the industrial working environment (29 CFR, Part 1910).5.3 These test methods have been found to be satisfactory for measuring oxides of nitrogen in ambient and workplace atmospheres over the ranges shown in 1.1.1.1 These test methods cover procedures for the continuous determination of total nitrogen dioxide (NO2) and nitric oxide (NO) as NOx, or nitric oxide (NO) alone or nitrogen dioxide (NO2) alone, in the ranges shown in the following table:  Approximate Range of Concentration(25°C and 101.3 kPa (1 atm))     Gas Ambient Atmosphere Workplace Atmosphere  μg/m3 (ppm) mg/m3 (ppm)     NO 10 to 600 (0.01 to 0.5) 0.6 to 30 (0.5 to 25)(NO + NO2) = NOx 20 to 1000 (0.01 to 0.05) 1 to 50 (0.5 to 25) NO2 20 to 1000 (0.01 to 0.5) 1 to 50 (0.5 to 25) 1.2 The test methods are based on the chemiluminescent reaction between nitric oxide and ozone.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 9.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
67 条记录,每页 15 条,当前第 1 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页