微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

5.1 The techniques described in this guide, if properly used in conjunction with a knowledge of behavior of particular material systems, will aid in the proper preparation of consolidated laminates for mechanical property testing.5.2 The techniques described are recommended to facilitate the consistent production of satisfactory test specimens by minimizing uncontrolled processing variance during specimen fabrication.5.3 Steps 3 through 8 of the 8-step process may not be required for particular specimen or test types. If the specimen or test does not require a given step in the process of specimen fabrication, that particular step may be skipped.5.4 A test specimen represents a simplification of the structural part. The test specimen's value lies in the ability of several sites to be able to test the specimen using standard techniques. Test data may not show identical properties to those obtained in a large structure, but a correlation can be made between test results and part performance. This may be due, in part, to the difficulty of creating a processing environment for test specimens that identically duplicates that of larger scale processes.5.5 Tolerances are guidelines based on current lab practices. This guide does not attempt to give detailed instructions due to the variety of possible panels and specimens that could be made. The tolerances should be used as a starting reference from which refinements can be made.1.1 This guide provides guidelines to facilitate the proper preparation of laminates and test specimens from fiber-reinforced organic matrix composite prepregs. The scope is limited to organic matrices and fiber reinforcement in unidirectional (tape) or orthagonal weave patterns. Other forms may require deviations from these general guidelines. Other processing techniques for test coupon preparation, for example, pultrusion, filament winding and resin-transfer molding, are not addressed.1.2 Specimen preparation is modeled as an 8-step process that is presented in Fig. 1 and Section 8. Laminate consolidation techniques are assumed to be by press or autoclave. This practice assumes that the materials are properly handled by the test facility to meet the requirements specified by the material supplier(s) or specification, or both. Proper test specimen identification also includes designation of process equipment, process steps, and any irregularities identified during processing.FIG. 1 8 Step Mechanical Test Data ModelNOTE 1: Material identification is mandatory. Continuous traceability of specimens is required throughout the process. Process checks (Appendix X4) may be done at the end of each step to verify that the step was performed to give a laminate or specimen of satisfactory quality. Steps 4 and 5 may be interchanged. For aramid fibers, step 5 routinely precedes step 4.  Steps 6, 7 and 8 may be interchanged.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers asbestos-cement insulating panels consisting of a core of insulating fiber board sandwiched between, and bonded to, two sheets of asbestos-cement facing board. Asbestos-cement insulating panels are designed for exterior and interior walls, partitions, curtain walls, roof decks, and for decorative purposes. Asbestos-cement insulating panels shall be composed of an insulating core sandwiched between, and bonded to, two facing sheets of asbestos-cement. The following test methods shall be performed: flexural strength; vapor permeability; thermal resistance; adhesive line bond; and dimensional measurements.1.1 This specification covers asbestos-cement insulating panels consisting of a core of insulating fiber board sandwiched between, and bonded to, two sheets of asbestos-cement facing board. Asbestos-cement insulating panels are designed for exterior and interior walls, partitions, curtain walls, roof decks, and for decorative purposes.1.2 All measurements and tests necessary for determining the conformity of asbestos-cement insulating panels with this specification are made in accordance with the methods covered in Section 9.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 Warning—Breathing of asbestos dust is hazardous. Asbestos and asbestos products present demonstrated health risks for users and for those with whom they come into contact. In addition to other precautions, when working with asbestos-cement products, minimize the dust that results. For information on the safe use of chrysoltile asbestos, refer to “Safe Use of Chrysotile Asbestos: A Manual on Preventive and Control Measures.”21.5 The following safety hazards caveat pertains only to the test method portion, Section 9, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See for a specific hazard warning.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 For a fabricated panel to be properly used, it must be adequately identified and packaged. It must be handled and stored in such a way that its physical property values are not degraded. Failure to follow good practice may result in the unnecessary failure of the fabricated panel in a properly designed application.4.2 This guide is not intended to replace project-specific storage, handling, identification, packaging, or installation requirements or quality assurance programs.1.1 This guide covers guidelines for the identification, packaging, handling, storage, and deployment of fabricated geomembrane panels. This guide is not to be considered as all encompassing since each project involving fabricated panels presents its own challenges and special conditions.1.2 This guide is intended to aid fabricators, suppliers, purchasers, and users of fabricated panels in the identification, packaging, handling, storage, and deployment of fabricated geomembrane panels.1.3 This guide is written for factory-fabricated geomembrane panels only. Other geosynthetics use Guide D4873/D4873M as their guide.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM C1658/C1658M-19e1 Standard Specification for Glass Mat Gypsum Panels Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers the glass mat gypsum panels. Glass mat interior gypsum panel, designed for use on walls, ceilings, or partitions and that affords a surface suitable to receive decoration. Glass mat coreboard gypsum panel, and glass mat shaftliner gypsum panel, designed for use as a base in multilayer systems or as gypsum studs or cores in semisolid or solid gypsum board partitions, or in shaftwall assemblies. Glass mat water-resistant gypsum panel, designed to be used as a base for the application of ceramic or plastic tile on walls or ceilings. Glass mat gypsum panel shall consist of a noncombustible core, gypsum, surfaced with glass mat partially or completely embedded in the core. Flexural strength, humidified deflection, null pull resistance, water resistance, and surface water absorption and shall conform to the physical property requirements of the materials specified.1.1 This specification covers the glass mat gypsum panels described in 1.1.1 – 1.1.3.1.1.1 Glass mat interior gypsum panel, designed for use on walls, ceilings, or partitions and that affords a surface suitable to receive decoration.1.1.2 Glass mat coreboard gypsum panel, and glass mat shaftliner gypsum panel, designed for use as a base in multilayer systems or as gypsum studs or cores in semisolid or solid gypsum board partitions, or in shaftwall assemblies.1.1.3 Glass mat water-resistant gypsum panel, designed to be used as a base for the application of ceramic or plastic tile on walls or ceilings. This product is also suitable for decoration. (This is distinct from a coated glass mat water-resistant gypsum panel ASTM 1178.)1.2 Specifications applicable to all glass mat gypsum panels are located in Sections 1 – 4 and 8 – 10. Specifications applicable to specific glass mat gypsum panels are located in the following sections:  Section          Glass mat interior gypsum panel 5          Glass mat coreboard gypsum panel, and glass          mat shaftliner gypsum panel 6          Glass mat water-resistant gypsum panel 71.3 The values stated in either inch-pound units or SI (metric) are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system shall be used independent of the other. Values from the two systems shall not be combined.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers glass-fiber reinforced polyester plastic panels intended for use in construction. Light transmitting panels covered by this specification are divided into two types, based on relative response to a laboratory flammability test: Type CC1 for limited flammability and Type CC2 for general purpose. These types may be further subdivided by grades based on relative response to weathering tests: Grade 1 for weather resistance and Grade 2 for general purpose. The polyester resin used in the panels shall be a thermosetting styrenated and acrylated polyester resin composed of polymeric esters in which the recurring ester groups are an integral part of the main polymer chain. The resin shall be reinforced with glass fibers. The polyester resin may contain additives for various purposes. The materials shall be tested for water absorption, tensile strength, linear thermal expansion, and flexural strength.1.1 This specification covers the classification, materials of construction, workmanship, minimum physical requirements, and methods of testing glass-fiber reinforced polyester plastic panels intended for use in construction. Panels for specialized or unique applications have the potential to require values significantly above or below those stated in this specification. Recommended practices for certain specific applications are included as Appendix X1. This specification is not intended to restrict or limit technological changes affecting performance when those changes are agreed upon between the purchaser and the seller.1.2 Supplementary information on chemical resistance, resistance to heat, and installation practices are provided in Appendix X1.1.3 The classification of these plastic panels into types based on relative response to a laboratory test shall not be considered a fire hazard classification.1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.5 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in Tables and Figures) shall not be considered as requirements of this standard.1.6 Fire properties are determined by using laboratory flammability tests (Test Methods D635, D1929, and E84).1.6.1 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products or assemblies under actual fire conditions.1.6.2 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.7 The following precautionary caveat pertains only to the test method portion, Section 8 of this specification. This specification does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this specification to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Heat flow meter apparatus are being used to measure the center-of-panel portion of a vacuum insulation panel, which typically has a very high value of thermal resistivity (that is, equal to or greater than 90 m-K/W). As described in Specification C1484, the center-of-panel thermal resistivity is used, along with the panel geometry and barrier material thermal conductivity, to determine the effective thermal resistance of the evacuated panel.5.2 Using a heat flow meter apparatus to measure the thermal resistivity of non-homogenous and high thermal resistance specimens is a non-standard application of the equipment, and shall only be performed by qualified personnel with understanding of heat transfer and error propagation. Familiarity with the configuration of both the apparatus and the vacuum insulation panel is necessary.5.3 The center-of-panel thermal transmission properties of evacuated panels vary due to the composition of the materials of construction, mean temperature and temperature difference, and the prior history. The selection of representative values for the thermal transmission properties of an evacuated panel for a particular application must be based on a consideration of these factors and will not apply necessarily without modification to all service conditions.1.1 This test method covers the measurement of steady-state thermal transmission through the center of a flat rectangular vacuum insulation panel using a heat flow meter apparatus.1.2 Total heat transfer through the non-homogenous geometry of a vacuum insulation panel requires the determination of several factors, as discussed in Specification C1484. One of those factors is the center-of-panel thermal resistivity. The center-of-panel thermal resistivity is an approximation of the thermal resistivity of the core evacuated region.1.3 This test method is based upon the technology of Test Method C518 but includes modifications for vacuum insulation panel applications as outlined in this test method.21.4 This test method shall be used in conjunction with Practice C1045 and Practice C1058.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Typically, FT is used to identify flaws that occur in the manufacture of composite structures, or to identify and track flaws that develop during the service lifetime of the structure. Flaws detected with FT include delamination, disbonds, voids, inclusions, foreign object debris, porosity, or the presence of fluid that is in contact with the backside of the inspection surface. For example, the effect of variable ply number (or thickness), bridging, and an insert simulating delamination on heat flow into a composite is shown in Fig. 1 (left). Bridging (Fig. 1, right) or delaminated areas show up as hot spots due to discontinuous heat flow, causing heating to be localized close to the inspection surface. With dedicated signal processing and the use of representative test samples, characterization of flaw depth and size, or measurement of component thickness and thermal diffusivity, may be performed.FIG. 1 Variation of Heat Flow Into a Composite With Variable Ply Thickness (Scenarios 1, 3, and 4), Bridging (Scenario 2) And an Insert (Scenario 5) (Left), And a Post Layup Line Scan Showing Bright Spots Attributed to Bridging (Right) (Courtesy of NASA Langley Research Center)5.2 Since FT is based on the diffusion of thermal energy from the inspection surface of the specimen to the opposing surface (or the depth plane of interest), the practice requires that data acquisition allows sufficient time for this process to occur, and that at the completion of the acquisition process, the radiated surface temperature signal collected by the IR camera is strong enough to be distinguished from spurious IR contributions from background sources or system noise.5.3 This method is based on accurate detection of changes in the emitted IR energy emanating from the inspection surface during the cooling process. As the emissivity of the inspection surface falls below that of an ideal blackbody (blackbody emissivity = 1), the signal detected by the IR camera may include components that are reflected from the inspection surface. Most composite materials can be examined without special surface preparation. However, it may be necessary to coat low-emissivity, optically translucent inspection surfaces with an optically opaque, high-emissivity water-washable paint.5.4 This practice applies to the detection of flaws with aspect ratio greater than one.5.5 This practice is based on the thermal response of a specimen to a light pulse that is uniformly distributed over the plane of the inspection surface. To ensure that 1-dimensional heat flow from the surface into the sample is the primary cooling mechanism during the data acquisition period, the height and width dimensions of the heated area should be significantly greater than the thickness of the specimen, or the depth plane of interest. To minimize edge effects, the height and width dimensions of the heated area should be at least 5 % greater than the height and width dimensions of the inspection area.5.6 This practice applies to flat panels, or to curved panels where the angle between the line normal to the inspection surface and the IR camera optical axis is less than 30°. Analysis of regions with higher curvature can result in streaking artifacts due to nonuniform heating (Fig. 2).FIG. 2 Thermal Scan of a Complex Composite Shape (Left) Showing Less Effective Heating of a High Curvature Saddle-Region, Resulting in a Darker Diagonal Streak in the Thermographic Image (Right) (Courtesy of NASA Langley Research Center)1.1 This practice describes a procedure for detecting subsurface flaws in composite panels and repair patches using Flash Thermography (FT), in which an infrared (IR) camera is used to detect anomalous cooling behavior of a sample surface after it has been heated with a spatially uniform light pulse from a flash lamp array.1.2 This practice describes established FT test methods that are currently used by industry, and have demonstrated utility in quality assurance of composite structures during post-manufacturing and in-service examinations.1.3 This practice has utility for testing of polymer composite panels and repair patches containing, but not limited to, bismaleimide, epoxy, phenolic, poly(amide imide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricated geometries include uniaxial, cross ply, and angle ply laminates; as well as honeycomb core sandwich core materials.1.4 This practice has utility for testing of ceramic matrix composite panels containing, but not limited to, silicon carbide, silicon nitride, and carbon matrix and fibers.1.5 This practice applies to polymer or ceramic matrix composite structures with inspection surfaces that are sufficiently optically opaque to absorb incident light, and that have sufficient emissivity to allow monitoring of the surface temperature with an IR camera. Excessively thick samples, or samples with low thermal diffusivities, require long acquisition periods and yield weak signals approaching background and noise levels, and may be impractical for this technique.1.6 This practice applies to detection of flaws in a composite panel or repair patch, or at the bonded interface between the panel and a supporting sandwich core or solid substrate. It does not apply to discontinuities in the sandwich core, or at the interface between the sandwich core and a second panel on the far side of the core (with respect to the inspection apparatus).1.7 This practice does not specify accept-reject criteria and is not intended to be used as a basis for approving composite structures for service.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Specimens obtained in accordance with the procedure section of this practice may be used for preconstruction studies of shotcrete mixtures, to qualify nozzlemen and equipment, or for quality control, or compressive or flexural strength testing, during the progress of a project.1.1 This practice covers procedures for preparing test panels of dry-mix or wet-mix shotcrete and for testing specimens sawed or cored from the panels.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 The text of this standard references notes and footnotes that provide explanatory materials (excluding those in tables and figures) that shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
83 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页