微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

5.1 The test method is used to estimate qualitatively the durability of weak rocks through weakening and disintegration resulting from a standard two cycles of wetting and drying in the service environment. (1-7).35.2 This test method is used to assign quantitative durability index values to weak rocks. A primary example is the Franklin Rating System (1).NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing, sampling, inspection, and so forth. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the slake durability index of a shale or other weak rock after three drying and two wetting cycles with abrasion effects.1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units, which are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers the spectrographic analysis of ores, minerals, and rocks for silver, palladium, platinum, gold and rhodium. The concentrations of precious metals which can be determined in the material being analyzed depend on the amount of sample assayed (Note 1). Concentration ranges for the lead fire assay beads are as follows:Element Concentration Range,%Silver 0.028 to 1.40Palladium 0.004 to 0.14Platinum 0.004 to 0.14Gold 0.003 to 0.14Rhodium 0.004 to 0.07Note 1—The amounts used are large enough to minimize weighing errors. A wide range of precious metal concentrations in rocks, minerals and ores can be covered by a modest range of percentages in the lead beads by regulating the weights of the initial sample and the lead bead. Also, both gold and silver can be determined in the lead bead. When either of these metals is used as a collector for the others in the assay, as is generally done, it cannot be determined without another assay.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Specific hazard statements are given in Section 9.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is intended to give a relatively rapid indication of the potential expansive reactivity of certain carbonate rocks that may be used as concrete aggregates. The test method has been successfully used in (1) research and (2) preliminary screening of aggregate sources to indicate the presence of material with a potential for deleterious expansion when used in concrete.5.2 The test method is intended as a research and screening method rather than as the basis of a specification requirement. It is intended to supplement data from field service records, petrographic examinations according to Guide C295/C295M, and tests of aggregate in concrete according to Test Method C1105.5.3 Alkalies participating in the expansive reactions with aggregate constituents in concrete usually are derived from the hydraulic cement; under certain circumstances they may be derived from other constituents of concrete or from external sources. Two types of alkali reactivity of aggregates are recognized: (1) alkali-silica reaction involving certain siliceous rocks, minerals, and artificial glasses, and (2) alkali carbonate reaction involving dolomite in certain calcitic dolomites, dolomitic limestones, and dolostones. This test method is not suitable as a means to detect alkali-silica reaction.1.1 This test method covers the determination of the expansion of a specimen of carbonate rock while immersed in a solution of sodium hydroxide (NaOH) at room temperature. The length changes occurring during such immersion indicate the general level of reactivity of the rock and whether tests should be made to determine the effect of aggregate prepared from the rock upon the volume change in concrete.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D4525-13e2 Standard Test Method for Permeability of Rocks by Flowing Air (Withdrawn 2022) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

5.1 This test method is designed to measure the permeability to air of a small sample of rock. By extrapolation, this test method also determines an equivalent of the liquid permeability. This parameter is used to calculate the flow through rock of fluids subjected to a pressure differential.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the coefficient of specific permeability for the flow of air through rocks. The method establishes representative values of the coefficient of permeability of rocks or well-indurated soils.1.2 This test method is limited to permeability values greater than 9.869 × 10-18 m2 (0.01 millidarcy), and is limited to rocks free of oil or unctuous matter.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The mean reflectance of the vitrinite maceral in sedimentary rocks as determined by this test method is used as an indicator of thermal maturity, that is, the progressive geochemical alteration of dispersed organic material experienced during diagenesis, catagenesis, and metagenesis. In the case of hydrocarbon source rocks, three major categories of thermal maturity are defined by vitrinite reflectance: immature (Roran ≤ 0.5 %), mature (Roran ≈ 0.5 % to 1.35 %), and overmature (Roran ≥ 1.35 %) with respect to the generation of liquid hydrocarbons, although not all practitioners agree on these thermal boundaries (10). Thermal maturity as determined by the reflectance of vitrinite dispersed in sedimentary rocks is similar to the rank classification of coals as presented in Classification D388 and measured similarly to the reflectance of vitrinite in coal as presented in Test Method D2798. The mean reflectance of the vitrinite maceral in sedimentary rocks correlates with geochemically determined parameters of thermal maturity and can be used to characterize thermal maturation history, to calibrate burial history models, and to better understand the processes of hydrocarbon generation, migration, and accumulation in conventional and unconventional petroleum systems.1.1 This test method covers the microscopical determination of the reflectance measured in immersion oil of polished surfaces of vitrinite dispersed in sedimentary rocks. This test method can also be used to determine the reflectance of macerals other than vitrinite dispersed in sedimentary rocks.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Test Method—The constant pressure injection test method is used to determine the transmissivity and storativity of low-permeability formations surrounding packed-off intervals. Advantages of the method are: (1) it avoids the effect of well-bore storage, (2) it may be employed over a wide range of rock mass permeabilities, and (3) it is considerably shorter in duration than the conventional pump and slug tests used in more permeable rocks.5.2 Analysis—The transient water flow rate data obtained using the suggested test method are evaluated by the curve-matching technique described by Jacob and Lohman (1)4 and extended to analysis of single fractures by Doe et al. (2). If the water flow rate attains steady state, it may be used to calculate the transmissivity of the test interval (3).NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.NOTE 3: The function of wells in any unconfined setting in a fractured terrain might make the determination of k problematic because the wells might only intersect tributary or subsidiary channels or conduits. The problems determining the k of a channel or conduit notwithstanding, the partial penetration of tributary channels may make determination of a meaningful number difficult. If plots of k in carbonates and other fractured settings are made and compared, they may show no indication that there are conduits or channels present, except when with the lowest probability one maybe intersected by a borehole and can be verified, such problems are described by Worthington (4) and Smart, 1999 (5). Additional guidance can be found in Guide D5717.1.1 This test method covers a field procedure for determining the transmissivity and storativity of geological formations having permeabilities lower than 10−3 μm2 (1 millidarcy) using constant head injection.1.2 The transmissivity and storativity values determined by this test method provide a good approximation of the capacity of the zone of interest to transmit water, if the test intervals are representative of the entire zone and the surrounding rock is fully water-saturated.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.NOTE 1: Unit Conversions—The permeability of a formation is often expressed in terms of the unit darcy (non-SI). A porous medium has a permeability of 1 Darcy when a fluid of viscosity 1 cp (1 mPa·s) flows through it at a rate of 1 cm3/s (10–6 m3/s)/1 cm2 (10–4 m2) cross-sectional area at a pressure differential of 1 atm (101.4 kPa)/1 cm (10 mm) of length. One Darcy corresponds to 0.987 μm2. For water as the flowing fluid at 20°C, a hydraulic conductivity of 9.66 μm/s corresponds to a permeability of 1 Darcy. Permeabilities may also be expressed as millidarcy (md), which is not an SI unit.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test Method—The pulse test method is used to determine the transmissivity and storativity of low-permeability formations surrounding the packed-off intervals. This test method is considerably shorter in duration than the pumping and slug tests used in more permeable rocks. To obtain results to the desired accuracy, pumping and slug tests in low-permeability formations are too time consuming, as indicated in Fig. 1 (from Bredehoeft and Papadopulos (1)).4 5.2 transmissivity, T—the transmissivity of a formation of thickness, b, is defined as follows: where: K   =   equivalent formation hydraulic conductivity (efhc). The efhc is the hydraulic conductivity of a material if it were homogeneous and porous over the entire interval. The hydraulic conductivity, K, is related to the equivalent formation, k, as follows: where: ρ   =   fluid density, μ   =   fluid viscosity, and g   =   acceleration due to gravity. 5.3 storativity, S—the storativity (or storage coefficient) of a formation of thickness, b, is defined as follows: where: Ss   =   equivalent bulk rock specific storage (ebrss). The ebrss is defined as the specific storage of a material if it were homogeneous and porous over the entire interval. The specific storage is given as follows: where: Cb   =   bulk rock compressibility, Cw   =   fluid compressibility, and n   =   formation porosity. 5.4 Analysis—The transient pressure data obtained using the suggested method are evaluated by the curve-matching technique described by Bredehoeft and Papadopulos (1), or by an analytical technique proposed by Wang et al (2). The latter is particularly useful for interpreting pulse tests when only the early-time transient pressure decay data are available. 5.5 Units:  5.5.1 Conversions—The permeability of a formation is often expressed in terms of the unit darcy. A porous medium has a permeability of 1 darcy when a fluid of viscosity 1 cP (1 mPa·s) flows through it at a rate of 1 cm3/s (10−6 m3/s)/1 cm2 (10−4 m2) cross-sectional area at a pressure differential of 1 atm (101.4 kPa)/1 cm (10 mm) of length. One darcy corresponds to 0.987 μm2. For water as the flowing fluid at 20°C, a hydraulic conductivity of 9.66 μm/s corresponds to a permeability of 1 darcy. Note 1: A darcy (or darcy unit) and millidarcy (md or mD) are units of permeability. They are not SI units, but are widely used in petroleum engineering and geology. A darcy has dimensional units in length. 5.5.2 Viscosity of Water—Table 1 shows the viscosity of water as a function of temperature. Note 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facility used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/observation/ and the like. Users of this standard are cautioned that compliance with Practice D3740 does not itself guarantee reliable results. Reliable results depend on many factors; D3740 provides a means of evaluating some of those factors. Note 3: The function of wells in any unconfined setting in a fractured terrain might make the determination of k problematic because the wells might only intersect tributary or subsidiary channels or conduits. The problems determining the k of a channel or conduit notwithstanding, the partial penetration of tributary channels may make determination of a meaningful number difficult. If plots of k in carbonates and other fractured settings are made and compared, they may show no indication that there are conduits or channels present, except when with the lowest probability one maybe intersected by a borehole and can be verified, such problems are described by Worthington (3) Smart, 1999 (4). Additional guidance can be found in D5717. 1.1 This test method covers a field procedure for determining the transmissivity and storativity of geological formations having permeabilities lower than 10−3 μm2 (1 millidarcy) using the pressure pulse technique. 1.2 The transmissivity and storativity values determined by this test method provide a good approximation of the capacity of the zone of interest to transmit water, if the test intervals are representative of the entire zone and the surrounding rock is fully water saturated. 1.3 Units—The values stated in SI units are to be regarded as the standard. The values in parentheses are mathematical conversions provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard. 1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard. 1.4.1 For purposes of comparing a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits. 1.4.2 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these conditions. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
11 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页