微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 592元 / 折扣价: 504 加购物车

在线阅读 收 藏

定价: 176元 / 折扣价: 150

在线阅读 收 藏
AS 1683.2-1974 Methods of test for rubber Solids content of latex 现行 发布日期 :  1974-10-01 实施日期 : 

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

4.1 Designers and installers of waterproofing systems may consult this guide for a discussion of important elements of the use of cold liquid-applied waterproofing membranes and associated elements of construction. This guide is not intended to serve as a specification for waterproofing installation.4.2 Long-term performance of waterproofing with a separate wearing course is important because of the substantial difficulty in determining the location of leakage and in removing overlying materials to make repairs.4.3 Refer to Guide C1471/C1471M for application on below grade walls and vertical surfaces.1.1 This guide describes the use of a high solids content, cold liquid-applied elastomeric waterproofing membrane that meets the criteria in Specification C836/C836M, in a waterproofing system subject to hydrostatic pressure for building decks over occupied space where the membrane is covered with a separate protective wearing course.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice is intended for use in collecting samples of single and multilayered liquids, with or without solids, from drums or similar containers, including those that are unstable, ruptured, or otherwise compromised. Special handling procedures (for example, remote drum opening, over-pressurized drum opening, drum deheading, etc.) are described in Drum Handling Practices at Hazardous Waste Sites.1.1 This practice covers typical equipment and methods for collecting samples of single or multilayered liquids, with or without solids, in drums or similar containers. These methods are adapted specifically for sampling drums having a volume of 110 gal (416 L) or less. These methods are applicable to hazardous material, product, or waste. Specific sample collection and handling requirements should be described in the site-specific work plan.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.2.4, 7.2.7.1, and Notes 1 and 2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Many microplastic particles enter the environment, including ambient waters and drinking water supplies, via wastewater sources resulting from both industrial processes and consumer products. The presence of high percentages of organic particles, including cellulose material originating from toilet paper and chitin-based materials originating from insect exoskeletons, makes visual identification and subsequent quantification of microplastic particles in wastewater difficult.5.2 This test method, associated sampling Practice D8332, and preparation Practice D8333 provide a standardized approach for the preparation of water and, particularly, wastewater samples. The isolation of microplastic particles from interfering contaminants by Practice D8333 enables positive identification and, therefore, quantification of microplastic particles.5.3 Using this test method, microplastic particles are characterized in terms of size, shape, and quantity, allowing for the enumeration of subsequent particle count for a given volume of sample. The method does not provide qualitative identification of plastic composition.1.1 This test method covers the determination of microplastic particle size distribution, shape characterization, and number concentration (particle counts) in sample extracts containing particles between 5 µm and 100 µm. Light is transmitted through a flow cell containing particles in liquid medium. The particles create shadows as they pass through the field of vision of a camera, producing a multitude of images. The images are then used to measure size, shape, and concentration.1.2 This test method is used as a complementary technique for microplastic particle and fiber polymer identification methods infrared microscopy and gas chromatography/mass spectroscopy pyrolysis.1.3 This test method requires that samples are collected according to Practice D8332 and prepared according to Practice D8333 prior to use.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Reliable, controlled flow of bulk solids from bins and hoppers is essential in almost every industrial facility. Unfortunately, flow stoppages due to arching and ratholing are common. Additional problems include uncontrolled flow (flooding) of powders, segregation of particle mixtures, usable capacity which is significantly less than design capacity, caking and spoilage of bulk solids in stagnant zones, and structural failures.5.2 By measuring the flow properties of bulk solids, and designing bins and hoppers based on these flow properties, most flow problems can be prevented or eliminated (1).35.3 For bulk solids with a significant percentage of particles (typically, one third or more) finer than about 6 mm (1/4 in.), the unconfined yield strength is governed by the fines (−6 mm fraction). For such bulk solids, strength and wall friction tests may be performed on the fine fraction only.NOTE 1: The quality of the result produced by this standard is dependent on the competence of personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors. Practice D3740 was developed for agencies engaged in the testing or inspection (or both) of soil and rock. As such it is not totally applicable to agencies performing this standard. However, users of this standard should recognize that the framework of Practice D3740 is appropriate for evaluating the quality of an agency performing this standard. Currently there is no known qualifying national authority that inspects agencies that perform this standard.1.1 This test method covers the apparatus and procedures for measuring the unconfined yield strength of bulk solids during both continuous flow and after storage at rest. In addition, measurements of internal friction, bulk density, and wall friction on various wall surfaces are included.1.2 This test method covers operation of the manually-controlled Schulze Ring Shear Tester. An automated version of this tester is also available. Its method of testing bulk solids is similar in principle to that described in this test method.1.3 The most common use of this information is in the design of storage bins and hoppers to prevent flow stoppages due to arching and ratholing, including the slope and smoothness of hopper walls to provide mass flow. Parameters for structural design of such equipment may also be derived from this data. Another application is the measurement of the flowability of bulk solids, for example, for comparison of different products or optimization.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives: and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measure are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

The spontaneous heating value of a substance is a measure of the ability of that substance to undergo self-heating reactions while supported by cellulosic or other fibrous material in air. It is an index of the autoignition tendency of the substance under such conditions.1.1 This test method covers the non-adiabatic determination of the spontaneous heating values (SHV) of liquids and solids. It is applicable to substances that are not completely volatile at the test temperature. Spontaneous heating values obtained by this test method are qualitative indications of the degree of self-heating that may be expected to occur upon exposure of the sample to air at the test temperature.1.2 Values obtained by this method are applicable to liquids and solids supported on cellulosic surfaces. They are not applicable to liquids on metal surfaces, on contaminated surfaces, or at pressures above atmospheric.1.3 Spontaneous heating values determined by the present test method are regarded only as qualitative measurements of self-heating which occurs under the conditions of the test. The test method does not purport to produce a quantitative measure of the enthalpy of reaction of the sample with air at a given test temperature. Such data can be obtained by the use of an adiabatic calorimeter. The existence, under the test conditions, of a positive temperature difference between the sample and the reference is evidence of a thermochemical reaction in the sample.1.4 The magnitude of the measured temperature difference is a semiquantitative indication of the enthalpy and rate of that reaction. Since factors such as heat loss from the sample to the bath and quenching of the reaction due to too rapid consumption of oxygen affect the amount and duration of the measured heat effect, care must be taken not to attribute too much quantitative significance to the test results. It is sufficient, for the purpose of this test, to determine whether or not the sample is capable of undergoing a self-heating reaction of sufficient magnitude and rapidity to produce a detectable thermal effect. The spontaneous heating value (SHV) can be lower than the test temperature. A negative result does not preclude spontaneous heating initiating at a temperature higher than the test temperature.1.5 This standard should be used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions and should not be used to describe or appraise the fire-hazard or fire-risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire-hazard assessment or a fire-risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard or fire risk of a particular end use.1.6 The values stated in SI units are to be regarded as the standard. In cases where materials, products or equipment are available in inch-pound units only, SI units are omitted.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Solids (nonvolatile matter) determinations of polishes, resin solutions, and wax emulsions take 2 to 4 h in accordance with Test Method D2834, not counting preparation time.4.2 Curves of solids/refractive index provide a means for determining solids in a matter of minutes.4.3 This practice is particularly useful for quality control and in process control for the production of polishes and polish components.1.1 This practice covers the use of a refractometer for determining the nonvolatile matter (total solids) in floor polishes. This practice is also applicable to resin solutions and wax emulsions used in floor polishes.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Most organic liquids and solids will ignite in a pressurized oxidizing gas atmosphere if heated to a sufficiently high temperature and pressure. This procedure provides a numerical value for the temperature at the onset of ignition under carefully controlled conditions. Means for extrapolation from this idealized situation to the description, appraisal, or regulation of fire and explosion hazards in specific field situations, are not established. Ranking of the ignition temperatures of several materials in the standard apparatus is generally in conformity with field experience.4.2 The temperature at which material will ignite spontaneously (AIT) will vary greatly with the geometry of the test system and the rate of heating. To achieve good interlaboratory agreement of ignition temperatures, it is necessary to use equipment of approximately the dimensions described in the test method. It is also necessary to follow the described procedure as closely as possible.4.3 The decomposition and oxidation of some fully fluorinated materials releases so little energy that there is no clear-cut indication of ignition. Nor will there be a clear indication of ignition if a sample volatilizes, distilling to another part of the reaction vessel, before reaching ignition temperature.1.1 This test method covers the determination of the temperature at which liquids and solids will spontaneously ignite. These materials must ignite without application of spark or flame in a high-pressure oxygen-enriched environment.1.2 This test method is intended for use at pressures of 2.1 MPa to 20.7 MPa [300 psi to 3000 psi]. The pressure used in the description of the method is 10.3 MPa [1500 psi], and is intended for applicability to high pressure conditions. The test method, as described, is for liquids or solids with ignition temperature in the range from 60 °C to 500 °C [140 °F to 932 °F].NOTE 1: Test Method G72/G72M normally utilizes samples of approximately 0.20 ± 0.03-g mass, a starting pressure of 10.3 MPa [1500 psi] and a temperature ramp rate of 5 °C/min. However, Autogenous Ignition Temperatures (AIT) can also be obtained under other test conditions. Testing experience has shown that AIT testing of volatile liquids can be influenced by the sample pre-conditioning and the sample mass. This will be addressed in the standard as Special Case 1 in subsection 8.2.2. Testing experience has also shown that AIT testing of solid or non-volatile liquid materials at low pressures (that is, < 2.1 MPa) can be significantly influenced by the sample mass and the temperature ramp rate. This will be addressed in the standard as Special Case 2, in subsection 8.2.3. Since the AIT of a material is dependent on the sample mass/configuration and test conditions, any departure from the standard conditions normally used for Test Method G72/G72M testing should be clearly indicated in the test report.1.3 This test method is for high-pressure pure oxygen. The test method may be used in atmospheres from 0.5 % to 100 % oxygen.1.4 An apparatus suitable for these requirements is described. This test method could be applied to higher pressures and materials of higher ignition temperature. If more severe requirements or other oxidizers than those described are desired, care must be taken in selecting an alternative safe apparatus capable of withstanding the conditions.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

2.1 Nonvolatile matter determination is useful as a quality control test, when used in conjunction with other tests, to assure specification compliance.1.1 This test method covers the determination of nonvolatile matter (total solids) in a water-emulsion, organic solvent-based liquid and paste floor polishes, and polymer-emulsion-type floor polishes.1.2 This test method recognizes that the products may contain material that will slowly volatilize or change chemically with a resulting change in weight of the nonvolatile matter. Therefore, since drying to constant weight is impractical, specific drying times have been selected.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
65 条记录,每页 15 条,当前第 1 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页