微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 A tiered strategy for characterization of nanoparticle properties is necessary to draw meaningful conclusions concerning dose-response relationships observed during inhalation toxicology experiments. This tiered strategy includes characterization of nanoparticles as produced (that is, measured as the bulk material sold by the supplier) and as administered (that is, measured at the point of delivery to a test subject) (Oberdorster et al. (6)).5.2 Test Methods B922 and C1274 and ISO 9277 and ISO 18757 exist for determination of the as produced surface area of bulk metal and metal oxide powders. During the delivery of nanoparticles in inhalation exposure chambers, the material properties may undergo change and therefore have properties that differ from the material as produced. This test method describes the determination of the as administered surface area of airborne metal oxide nanoparticles in inhalation exposure chambers for inhalation toxicology studies.1.1 This test method covers determination of surface area of airborne metal oxide nanoparticles in inhalation exposure chambers for inhalation toxicology studies. Surface area may be measured by gas adsorption methods using adsorbates such as nitrogen, krypton, and argon (Brunauer et al. (1),2 Anderson (2), Gregg and Sing (3)) or by ion attachment and mobility-based methods (Ku and Maynard (4)). This test method is specific to the measurement of surface area by gas adsorption by krypton gas adsorption. The test method permits the use of any modern commercial krypton adsorption instruments but strictly defines the sample collection, outgassing, and analysis procedures for metal and metal oxide nanoparticles. Use of krypton is required due to the low overall surface area of particle-laden samples and the need to accurately measure the background surface area of the filter used for sample collection. Instrument-reported values of surface area based on the multipoint Brunauer, Emmett and Teller (BET) equation (Brunauer et al. (1), Anderson (2), Gregg and Sing (3)) are used to calculate surface area of airborne nanoparticles collected on a filter.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. State all numerical values in terms of SI units unless specific instrumentation software reports surface area using alternate units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Both suppliers and users of metals can benefit from knowledge of the surface area of these materials. Results of many intermediate and final processing steps are controlled by, or related to, specific surface area of the metal. The performance of many sintered or cast metal structures may be predicted from the specific surface area of the starting metal powder, or all or a portion of the finished piece.1.1 This test method covers determination of surface area of metal powders. The test method specifies general procedures that are applicable to many commercial physical adsorption instruments. The method provides specific sample outgassing procedures for listed materials. It includes additional general outgassing instructions for other metals. The multipoint equation of Brunauer, Emmett, and Teller (BET),2 along with the single point approximation of the BET equation, forms the basis for all calculations.1.2 This test method does not include all existing procedures appropriate for outgassing metallic materials. The procedures included provided acceptable results for samples analyzed during interlaboratory testing. The investigator shall determine the appropriateness of listed procedures.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 State all numerical values in terms of SI units, unless specific instrumentation software reports surface area using alternate units. In this case, present both reported and equivalent SI units in the final written report. Many instruments report surface area as m2/g, instead of using correct SI units (m2/kg).1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the organic halides in water in concentrations from 5 to 1000 [mu]g/L. Higher halide concentrations may be determined by making an appropriate dilution. 1.2 This test method is applicable only for those organic halides that can be adsorbed by granular activated carbon (GAC). 2,3,4 1.3 This test method is applicable to samples whose inorganic halide concentration does not exceed the organic halide concentration by more than 20000 times. Chloride ion may be determined by Test Methods D512. See Section 6. 1.4 This test method was used successfully with several waters (see 14.3). It is the user's responsibility to ensure the validity of this test method for waters of untested matrices. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The determination of the total volume percent of saturates, olefins, and aromatics in petroleum fractions is important in characterizing the quality of petroleum fractions as gasoline blending components and as feeds to catalytic reforming processes. This information is also important in characterizing petroleum fractions and products from catalytic reforming and from thermal and catalytic cracking as blending components for motor and aviation fuels. This information is also important as a measure of the quality of fuels, such as specified in Specification D1655.1.1 This test method covers the determination of hydrocarbon types of total aromatics, total olefins, and total saturates in petroleum fractions that distill below 315 °C. Samples containing dark-colored components that interfere in reading the chromatographic bands cannot be analyzed.NOTE 1: For the determination of olefins below 0.3 % by volume, other test methods are available, such as Test Method D2710.1.2 This test method is intended for use with full boiling range products. Cooperative data have established that the precision statement does not apply to narrow boiling petroleum fractions near the 315 °C limit. Such samples are not eluted properly, and results are erratic.1.3 This test method is also applicable to automotive spark-ignition engine fuels which are gasolines with and without blended oxygenates, such as alcohols and ethers (for example MTBE, ethanol) and where gasoline is the primary component by volume in the blend.1.4 The applicability of this test method to products derived from fossil fuels other than petroleum, such as coal, shale, or tar sands, has not been determined, and the precision statement may or may not apply to such products.1.5 This test method has two precision statements depicted in Table 3 and Table 4.1.5.1 Table 3 is applicable to fuels that do not contain oxygenated blending components over the test method concentration working ranges from 5 % to 99 % by volume aromatics, 1 % to 55 % by volume olefins, and 1 % to 95 % by volume saturates in petroleum fractions and with a final boiling point of <315 °C. It may or may not apply to automotive gasolines containing lead antiknock mixtures.1.5.2 Table 4 precision was derived from an ILS containing only blended oxygenated (for example, MTBE, ethanol) and non-oxygenated automotive spark-ignition engine fuels (gasolines) and is applicable only in the test method concentration working range of 13 % to 40 % by volume aromatics, 4 % to 33 % by volume olefins, and 45 % to 68 % by volume saturates.1.5.3 Non-oxygenated automotive spark-ignition engine fuels (gasolines) outside the inclusive valid test result reporting concentration ranges of Table 4 may use the precision in Table 3 and its applicable concentration ranges.1.6 The oxygenated blending components, methanol, ethanol, methyl-tert-butylether (MTBE), tert-amylmethylether (TAME), and ethyl-tert-butylether (ETBE), do not interfere with the determination of hydrocarbon types at concentrations normally found in commercial blends. These oxygenated components are not detected since they elute with the alcohol desorbent. Other oxygenated compounds shall be individually verified. When samples containing oxygenated blending components are analyzed, correct the results to a total-sample basis.1.7 This test method includes a relative bias section based on Practice D6708 accuracy assessment between Test Method D1319 and Test Method D5769 for total aromatics in spark-ignition engine fuels as a possible Test Method D1319 alternative to Test Method D5769 for U.S. EPA spark-ignition engine fuel regulations reporting. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatic concentration range from 3.3 % to 34.4 % by volume as measured by Test Method D1319 and the distillation temperature T95, at which 95 % of the sample has evaporated, ranges from 149.1 °C to 196.6 °C (300.3 °F to 385.8 °F) when tested according to Test Method D86.1.7.1 The applicable Test Method D5769 range for total aromatics is 3.7 % to 29.4 % by volume as reported by Test Method D5769 and the distillation temperature T95 values, at which 95 % of the sample has evaporated, when tested according to Test Method D86 is from 149.1 °C to 196.6 °C (300.3 °F to 385.8 °F).1.7.2 Regulations may change over time and the user is advised to verify current regulatory requirements.1.8 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.9 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 7, 8.1, and 10.5.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is used to measure the total and external surface area of carbon blacks based on multipoint nitrogen adsorption. The NSA measurement is based on the B.E.T. theory and it includes the total surface area, inclusive of micropores, pore diameters less than 2 nm (20 Å). The external surface area, based on the statistical thickness method (STSA), is defined as the specific surface area that is accessible to rubber.4.2 CTAB Surface Area (formerly Test Method D3765) has been withdrawn. The CTAB value may be estimated from the STSA value using Eq 1. The equation is based on a linear regression of the STSA and CTAB measured values of the SRB 5 standards.1.1 This test method covers the determination of the total surface area by the Brunauer, Emmett, and Teller (B.E.T. NSA) theory of multilayer gas adsorption behavior using multipoint determinations and the external surface area based on the statistical thickness surface area method.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (The minimum safety equipment should include protective gloves, sturdy eye and face protection).1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Granular activated carbon (GAC) is commonly used to remove contaminants from water. However if not used properly, GAC can not only be expensive but can at times be ineffective. The development of engineering data for the design of full-scale adsorbers often requires time-consuming and expensive pilot plant studies. This rapid standard practice has been developed to predict adsorption in large-scale adsorbers based upon results from small column testing. In contrast to pilot plant studies, the small-scale column test presented in this practice does not allow for a running evaluation of factors that may affect GAC performance over time. Such factors may include, for example, an increased removal of target compounds by bacterial colonizing GAC3 or long-term fouling of GAC caused by inorganic compounds or background organic matter.4 Nevertheless, this practice offers more relevant operational data than isotherm testing without the principal drawbacks of pilot plant studies, namely time and expense; and unlike pilot plant studies, small-scale studies can be performed in a laboratory using water sampled from a remote location.5.2 This practice known as the rapid small-scale column test (RSSCT) uses empty bed contact time (EBCT) and hydraulic loading to describe the adsorption process. Mean carbon particle diameter is used to scale RSSCT results to predict the performance of a full-scale adsorber.5.3 This practice can be used to compare the effectiveness of different activated carbons for the removal of contaminants from a common water stream.1.1 This practice covers a test method for the evaluation of granular activated carbon (GAC) for the adsorption of soluble pollutants from water. This practice can be used to estimate the operating capacities of virgin and reactivated granular activated carbons. The results obtained from the small-scale column testing can be used to predict the adsorption of target compounds on GAC in a large column or full-scale adsorber application.1.2 This practice can be applied to all types of water including synthetically contaminated water (prepared by spiking high-purity water with selected contaminants), potable waters, industrial wastewaters, sanitary wastes, and effluent waters.1.3 This practice is useful for the determination of breakthrough curves for specific contaminants in water, the determination of the lengths of the adsorbates mass transfer zones (MTZ), and the prediction of GAC usage rates for larger scale adsorbers.1.4 The following safety caveat applies to the procedure section, Section 10, of this practice: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 These test methods cover the determination of the external surface area of carbon blacks by the statistical thickness surface area (STSA) method. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The test method has two main functions: first, it provides data useful for establishing the pore size distribution of catalyst materials, which in turn may influence their performance; and second, it serves as a laboratory test which may be used to study porosity changes that may occur during the manufacture and evaluation of catalysts.1.1 This test method covers the determination of nitrogen adsorption and desorption isotherms of catalysts and catalyst carriers at the boiling point of liquid nitrogen.2 A static volumetric measuring system is used to obtain sufficient equilibrium adsorption points on each branch of the isotherm to adequately define the adsorption and desorption branches of the isotherm. Thirty points evenly spread over the isotherm is considered to be the minimum number of points that will adequately define the isotherm.1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method has been found useful for the determination of the specific surface area of catalysts and catalyst carriers in the range from 0.05 m2/g to 10 m2/g for materials specification, manufacturing control, and research and development in the evaluation of catalysts. The determination of surface area of catalysts and catalyst carriers above 10 m2/g is addressed in Test Method D3663 – Surface Area of Catalyst and Catalyst Carriers – and is appropriate for most samples with specific surface areas above 1 m2/g.1.1 This test method covers the determination of the specific surface area of catalysts and catalyst carriers in the range from 0.05 m2/g to 10 m2/g. A volumetric measuring system is used to obtain at least three data points which fall within the linear BET region.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Promulgations by the U.S. Occupational Safety and Health Administration (OSHA) in 29 CFR 1910.1000 designate that certain organic compounds must not be present in workplace atmospheres at concentrations above specific values.5.2 This practice, when used in conjunction with Test Method D3687, will provide the needed accuracy and precision for the determination of airborne time-weighted average concentrations of many of the organic chemicals including but not limited to CDC-99-74-45, HSM-99-71-31, NIOSH Manual of Analytical Methods, 29 CFR 1910.1000, OSHA Chemical Sampling Information, OSHA Sampling and Analytical Methods, and HSE Methods for the Determination of Hazardous Substances.5.3 A partial list of chemicals for which this method is applicable is given in Annex A1, along with their OSHA permissible exposure limits.1.1 This practice covers a method for the sampling of atmospheres to determine the presence of certain organic vapors by means of adsorption on activated charcoal using a charcoal tube and a small portable sampling pump worn by a worker. A list of some of the organic chemical vapors that can be sampled by this practice is provided in Annex A1. This list is presented as an information guide and should not be considered as absolute or complete.1.2 This practice does not cover any method of sampling that requires special impregnation of activated charcoal or other adsorption media.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. A specific safety precaution is given in 9.4.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Promulgations by the U.S. Federal Occupational Safety and Health Administration (OSHA) in 29 CFR 1910 designate that certain organic compounds must not be present in workplace atmospheres at concentrations above specified values.5.2 This test method, when used in conjunction with Practice D3686, will promote needed accuracy and precision in the determination of airborne concentrations of many of the organic chemicals including but not limited to 29 CFR 1910, CDC-99-74-45, NIOSH Manual of Analytical Methods, OSHA Sampling and Analytical Methods, and HSE Methods for the Determination of Hazardous Substances. It can be used to determine worker exposures to these chemicals, provided appropriate sampling periods are used.5.3 Most laboratories are equipped with apparatus similar to that described in Section 7. Other apparatus can be used when analytical procedures suitable for that equipment are employed. The analytical techniques (or variations thereof) described in Sections 9 – 11 are in general use to analyze volatile organic compounds extracted from charcoal. Other procedures can be used when appropriate and validated as being suitable for the intended use.1.1 This test method describes the extraction and gas chromatographic determination of organic vapors that have been adsorbed from air in sampling tubes packed with activated charcoal.1.2 This test method is complementary to Practice D3686.1.3 This test method is applicable for analysis of samples taken from workplace or other atmospheres provided that the contaminant adsorbs onto charcoal, that it can be adequately extracted from the charcoal, and that it can be analyzed by gas chromatography (GC). Other adsorbents and other extraction techniques are described in Practice D6196.1.4 Organic compounds of multicomponent samples may mutually interfere during analysis. Methods to resolve interferences are given in Section 6.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautions are given in 8.5, 9.2, and in X1.2.3.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 These test methods cover the determination of the nitrogen surface area of carbon blacks by the conventional Brunauer, Emmett, and Teller (B.E.T.) theory of multilayer gas adsorption behavior using multipoint determinations. These test methods specify the sample preparation and treatment, instrument calibrations, required accuracy and precision of experimental data, and calculations of the surface area results from the obtained data. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (The minimum safety equipment should include protective gloves, sturdy eye and face protection, and means to deal with accidental mercury spills.)

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 These test methods measure the approximate surface area of precipitated hydrated silicas that is available to the nitrogen molecule using an approximation of the B.E.T. method. While the multi-point version of the B.E.T. method is generally accepted as being less prone to errors arising from the varying surface properties of individual samples, the single-point approximation is often adequate due to the shorter time per test and relative simplicity of the instrumentation needed. Quality control applications and comparative tests on near-identical samples of close chemical and micro-structural composition are likely to be the applications of greatest value.1.1 These test methods cover a procedure to measure the surface area of precipitated hydrated silicas by, a single point approximation of the Brunauer, Emmett, and Teller (B.E.T.)2 theory of multilayer gas adsorption. These test methods specify the sample preparation and treatment, instrument calibrations, required accuracy and precision of experimental data, and calculations of the surface area results from the obtained data.1.2 These test methods are used to determine the single point nitrogen surface areas in the range of 100 to 500 m2/g.1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. The minimum safety equipment should include protective gloves, sturdy eye and face protection.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 These test methods cover the determination of the surface area of carbon blacks. The test methods appear in the following order: SectionsTest Method A—Surface Area by Ni-Count-1 Apparatus 9-14Test Method B—Surface Area by Model 2200 Automatic Automatic Surface Area Analyzer 15-20Test Method C—Surface Area by Continuous Flow Chromatography 21-27Test Method D—Surface Area by Monosorb Surface Area Analyzer 28-351.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 Goal values for the standard reference blacks were determined by using Test Methods D4820.1.4 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statement, see Note 3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The iodine adsorption number is useful in characterizing carbon blacks. It is related to the surface area of carbon blacks and is generally in agreement with nitrogen surface area. The presence of volatiles, surface porosity, or extractables will influence the iodine adsorption number. Aging of carbon black can also influence the iodine number.1.1 This test method covers the determination of the iodine adsorption number of carbon black.1.1.1 Method A is the original test method for this determination and Method B is an alternate test method using automated sample processing and analysis.1.2 The iodine adsorption number of carbon black has been shown to decrease with sample aging. Iodine Number reference materials have been produced that exhibit stable iodine number upon aging. One or more of these reference materials are recommended for daily monitoring (x-charts) to ensure that the results are within the control limits of the individual reference material. Use all Iodine Number reference materials from a set for standardization of iodine testing (see Section 8) when target values cannot be obtained.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
22 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页