微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Accurate determination of the density, relative density (specific gravity), or API gravity of petroleum and its products is necessary for the conversion of measured volumes to volumes or masses, or both, at the standard reference temperatures of 15 °C or 60 °F during custody transfer.5.2 This procedure is most suitable for determining the density, relative density (specific gravity), or API gravity of low viscosity transparent liquids. This procedure can also be used for viscous liquids by allowing sufficient time for the hydrometer to reach temperature equilibrium, and for opaque liquids by employing a suitable meniscus correction. Additionally for both transparent and opaque fluids the readings shall be corrected for the thermal glass expansion effect and alternative calibration temperature effects before correcting to the reference temperature.5.3 When used in connection with bulk oil measurements, volume correction errors are minimized by observing the hydrometer reading at a temperature close to that of the bulk oil temperature.5.4 Density, relative density, or API gravity is a factor governing the quality and pricing of crude petroleum. However, this property of petroleum is an uncertain indication of its quality unless correlated with other properties.5.5 Density is an important quality indicator for automotive, aviation and marine fuels, where it affects storage, handling and combustion.1.1 This test method covers the laboratory determination using a glass hydrometer in conjunction with a series of calculations, of the density, relative density, or API gravity of crude petroleum, petroleum products, or mixtures of petroleum and nonpetroleum products normally handled as liquids, and having a Reid vapor pressure of 101.325 kPa (14.696 psi) or less. Values are determined at existing temperatures and corrected to 15 °C or 60 °F by means of a series of calculations and international standard tables.1.2 The initial hydrometer readings obtained are uncorrected hydrometer readings and not density measurements. Readings are measured on a hydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternative calibration temperature effects and to the reference temperature by means of the Petroleum Measurement Tables; values obtained at other than the reference temperature being hydrometer readings and not density measurements.1.3 Readings determined as density, relative density, or API gravity can be converted to equivalent values in the other units or alternative reference temperatures by means of Interconversion Procedures (API MPMS Chapter 11.5), or Adjunct to D1250 Guide for Petroleum Measurement Tables (API MPMS Chapter 11.1), or both, or tables, as applicable.1.4 The initial hydrometer readings determined in the laboratory shall be recorded before performing any calculations. The calculations required in Section 10 shall be applied to the initial hydrometer reading with observations and results reported as required by Section 11 prior to use in a subsequent calculation procedure (ticket calculation, meter factor calculation, or base prover volume determination).1.5 Annex A1 contains a procedure for verifying or certifying the equipment for this test method.1.6 The values stated in SI units are to be regarded as standard.1.6.1 Exception—The values given in parentheses are provided for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Density is a fundamental physical property that may be used in conjunction with other properties to characterize the quality of crude oils.5.2 The density or relative density of crude oils is used for the conversion of measured volumes to volumes at the standard temperatures of 15 °C or 60 °F and for the conversion of crude mass measurements into volume units.5.3 The application of the density result obtained from this test method, for fiscal or custody transfer accounting calculations, may require measurements of the water and sediment contents obtained on similar specimens of the crude oil parcel.1.1 This test method covers the determination of the density, relative density, and API gravity of crude oils that may be handled in a normal fashion as liquids at test temperatures between 15 °C and 35 °C utilizing either manual or automated sample injection equipment. This test method applies to crude oils with high vapor pressures provided appropriate precautions are taken to prevent vapor loss during transfer of the sample to the density analyzer.1.2 This test method was evaluated in interlaboratory study testing using crude oils in the 0.75 g/mL to 0.95 g/mL range. Lighter crude oil may require special handling to prevent vapor losses.1.3 The values stated in SI units are to be regarded as standard. Other units of measurement are included in this standard. The accepted units of measurement of density are grams per millilitre and kilograms per cubic metre.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 7.4, 7.5, and 7.6.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers engine oils for light-duty and heavy-duty internal combustion engines used under a variety of operating conditions in automobiles, trucks, vans, buses, and off-highway farm, industrial, and construction equipment. Automotive engine oils are classified in three general arrangements: S, C, and Energy Conserving. These arrangements are further divided into categories with performance measured as follows: SH, SJ, SL, SM, CF-4, CF, CF-2, CG-4, CH-4, CI-4, CJ-4, Energy Conserving associated with SJ, and Energy Conserving associated with SL. Different bench and chemical tests shall be performed to help evaluate some aspects of engine oil performance.1.1 This specification covers engine oils for light-duty and heavy-duty internal combustion engines used under a variety of operating conditions in automobiles, trucks, vans, buses, and off-highway farm, industrial, and construction equipment.21.2 This specification is not intended to cover engine oil applications such as outboard motors, snowmobiles, lawn mowers, motorcycles, railroad locomotives, or oceangoing vessels.1.3 This specification is based on engine test results that generally have been correlated with results obtained on reference oils in actual service engines operating with gasoline or diesel fuel. As it pertains to the API SL engine oil category, it is based on engine test results that generally have been correlated with results obtained on reference oils run in gasoline engine Sequence Tests that defined engine oil categories prior to 2000. It should be recognized that not all aspects of engine oil performance are evaluated by the engine tests in this specification. In addition, when assessing oil performance, it is desirable that the oil be evaluated under actual operating conditions.1.4 This specification includes bench and chemical tests that help evaluate some aspects of engine oil performance not covered by the engine tests in this specification.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5.1 Exceptions: 1.5.1.1 The roller follower shaft wear in Test Method D5966 is in mils.1.5.1.2 The oil consumption in Test Method D6750 is in grams per kilowatthour.NOTE 1: The kWh unit is deprecated. The preferred SI unit is the joule (J); 1 kWh = 3.6 MJ.1.5.1.3 The bearing wear in Test Method D6709 is in grams and is described as weight loss, a non-SI term.1.5.1.4 Some of the appendixes are verbatim from other sources, and non-SI units are included.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 Density and API gravity are used in custody transfer quantity calculations and to satisfy transportation, storage, and regulatory requirements. Accurate determination of density or API gravity of crude petroleum and liquid petroleum products is necessary for the conversion of measured volumes to volumes at the standard temperatures of 15 °C or 60 °F.5.2 Density and API gravity are also factors that indicate the quality of crude petroleum. Crude petroleum prices are frequently posted against values in kg/m3 or in degrees API. However, this property of petroleum is an uncertain indication of its quality unless correlated with other properties.5.3 Field of Application—Because the thermohydrometer incorporates both the hydrometer and thermometer in one device, it is more applicable in field operations for determining density or API gravity of crude petroleum and other liquid petroleum products. The procedure is convenient for gathering main trunk pipelines and other field applications where limited laboratory facilities are available. The thermohydrometer method may have limitations in some petroleum density determinations. When this is the case, other methods such as Test Method D1298 (API MPMS Chapter 9.1) may be used.5.4 This procedure is suitable for determining the density, relative density, or API gravity of low viscosity, transparent or opaque liquids, or both. This procedure, when used for opaque liquids, requires the use of a meniscus correction (see 9.2). Additionally for both transparent and opaque fluids the readings shall be corrected for the thermal glass expansion effect and alternate calibration temperature effects before correcting to the reference temperature. This procedure can also be used for viscous liquids by allowing sufficient time for the thermohydrometer to reach temperature equilibrium.1.1 This test method covers the determination, using a glass thermohydrometer in conjunction with a series of calculations, of the density, relative density, or API gravity of crude petroleum, petroleum products, or mixtures of petroleum and nonpetroleum products normally handled as liquids and having a Reid vapor pressures of 101.325 kPa (14.696 psi) or less. Values are determined at existing temperatures and corrected to 15 °C or 60 °F by means of a series of calculations and international standard tables.1.2 The initial thermohydrometer readings obtained are uncorrected hydrometer readings and not density measurements. Readings are measured on a thermohydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternate calibration temperature effects and to the reference temperature by means of calculations and Adjunct to D1250 Guide for Use of the Petroleum Measurement Tables (API MPMS Chapter 11.1).1.3 Readings determined as density, relative density, or API gravity can be converted to equivalent values in the other units or alternate reference temperatures by means of Interconversion Procedures (API MPMS Chapter 11.5) or Adjunct to D1250 Guide for Use of the Petroleum Measurement Tables (API MPMS Chapter 11.1), or both, or tables as applicable.1.4 The initial thermohydrometer reading shall be recorded before performing any calculations. The calculations required in Section 9 shall be applied to the initial thermohydrometer reading with observations and results reported as required by Section 11 prior to use in a subsequent calculation procedure (measurement ticket calculation, meter factor calculation, or base prover volume determination).1.5 Annex A1 contains a procedure for verifying or certifying the equipment of this test method.1.6 The values stated in SI units are to be regarded as standard.1.6.1 Exception—The values given in parentheses are for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The expanded limits of the Adjunct for VCF are defined in a mixture of terms of customary and metric units. Table 1 shows the defining limits and their associated units in bold italics. Also shown in Table 1 are the limits converted to their equivalent units (and, in the case of the densities, other base temperatures).5.2 Note that only the precision levels of the defining values shown in Table 1 are correct. The other values showing converted units have been rounded to the significant digits shown; as rounded values, they may numerically fall just outside of the actual limits established by the defining values.5.3 Table 2 provides a cross-reference between the historical table designations and the corresponding section in the Adjunct for VCF. Note that procedure paragraphs 11.1.6.3 (U.S. customary units) and 11.1.7.3 (metric units) provide methods for correcting on-line density measurements from live conditions to base conditions and then to compute CTPL factors for continuous volume corrections to base conditions.5.4 When a glass hydrometer is used to measure the density of a liquid, special corrections must be made to account for the thermal expansion of the glass when the temperature is different from that at which the hydrometer was calibrated. The 1980 CTL Tables had generalized equations to correct glass hydrometer readings, and these corrections were part of the printed odd-numbered tables. However, detailed procedures to correct a glass hydrometer reading are beyond the scope of the Adjunct for VCF. The user should refer to the appropriate sections of API MPMS Chapter 9 or other appropriate density/hydrometer standards for guidance.5.5 The set of correlations given in the Adjunct for VCF is intended for use with petroleum fluids comprising either crude oils, refined products, or lubricating oils that are single-phase liquids under normal operating conditions. The liquid classifications listed here are typical terms used in the industry, but local nomenclature may vary. The list is illustrative and is not meant to be all-inclusive.5.6 Crude Oils—A crude oil is considered to conform to the commodity group Generalized Crude Oils if its density falls in the range between approximately –10°API to 100°API. Crude oils that have been stabilized for transportation or storage purposes and whose API gravities lie within that range are considered to be part of the Crude Oil group. Also, aviation Jet B (JP-4) is best represented by the Crude Oil correlation.5.7 Refined Products—A refined product is considered to conform to the commodity group of Generalized Refined Products if the fluid falls within one of the refined product groups. Note the product descriptors are generalizations. The commercial specification ranges of some products may place their densities partly within an adjacent class (for example, a low-density diesel may lie in the jet fuel class). In such cases, the product should be allocated to the class appropriate to its density, not its descriptor. The groups are defined as follows:5.7.1 Gasoline—Motor gasoline and unfinished gasoline blending stock with a base density range between approximately 50°API and 85°API. This group includes substances with the commercial identification of: premium gasoline, unleaded gasoline, motor spirit, clear gasoline, low-lead gas, motor gasoline, catalyst gas, alkylate, catalytic cracked gasoline, naphtha, reformulated gasoline, and aviation gasoline.5.7.2 Jet Fuels—Jet fuels, kerosene, and Stoddard solvents with a base density range between approximately 37°API and 50°API. This group includes substances with the commercial identification of: aviation kerosene K1 and K2, aviation Jet A and A-1, kerosene, Stoddard solvent, JP-5, and JP-8.5.7.3 Fuel Oils—Diesel oils, heating oils, and fuel oils with a base density range between approximately –10°API and 37°API. This group includes substances with the commercial identification of: No. 6 fuel oil, fuel oil PA, low-sulfur fuel oil, LT (low temperature) fuel oil, fuel oil, fuel oils LLS (light low sulfur), No. 2 furnace oil, furnace oil, auto diesel, gas oil, No. 2 burner fuel, diesel fuel, heating oil, and premium diesel.5.8 Lubricating Oils—A lubricating oil is considered to conform to the commodity group Generalized Lubricating Oils if it is a base stock derived from crude oil fractions by distillation or asphalt precipitation. For the purpose of the Adjunct for VCF, lubricating oils have initial boiling points greater than 700 °F (370 °C) and densities in the range between approximately –10°API to 45°API.5.9 Special Applications—Liquids that are assigned the special applications category are generally relatively pure products or homogeneous mixtures with stable (unchanging) chemical composition that are derived from petroleum (or are petroleum-based with minor proportions of other constituents) and have been tested to establish a specific thermal expansion factor for the particular fluid. These tables should be considered for use when:5.9.1 The generalized commodity groups' parameters are suspected of not adequately representing the thermal expansion properties of the liquid.5.9.2 A precise thermal expansion coefficient can be determined by experiment. A minimum of ten temperature/density data points is recommended to use this method. See 11.1.5.2 of the Adjunct for VCF for the procedure to calculate the thermal expansion coefficient from measured density data.5.9.3 Buyer and seller agree that, for their purpose, a greater degree of equity can be obtained using factors specifically measured for the liquid involved in the transaction.5.10 Refer to paragraphs 11.1.2.4 and 11.1.2.5 in the Adjunct for VCF for a complete description of the suitability of the implementation procedures for specific hydrocarbon liquids.1.1 This guide provides information related to the algorithm and implementation procedure but does not contain the full set of algorithms. The algorithms, instructions, procedures, and examples are located in the associated supplementary adjuncts. The Adjunct for Volume Correction Factors (VCF) for temperature and pressure volume correction factors for generalized crude oils, refined products, and lubricating oils provides the algorithm and implementation procedure for the correction of temperature and pressure effects on density and volume of liquid hydrocarbons. Natural gas liquids (NGLs) and liquefied petroleum gases (LPGs) are excluded from consideration in this standard but may be found in API MPMS Chapter 11.2.4/GPA 8217 Temperature Correction for NGL and LPG. As this Adjunct for VCF will be applied to a variety of applications, the output parameters of CTL, Fp, CPL, and CTPL may be used as specified in other standards.1.2 Including the pressure correction in the Adjunct for VCF represents an important change from the “temperature only” correction factors given in the 1980 Petroleum Measurement Tables. However, if the pressure is one atmosphere (the standard pressure), then there is no pressure correction and the standard/adjunct(s) will give CTL values consistent with the 1980 Petroleum Measurement Tables.1.3 The Adjunct for VCF covers general procedures for the conversion of input data to generate CTL, Fp, CPL, and CTPL values at the user-specified base temperature and pressure (Tb, Pb). Two sets of procedures are included for computing volume correction factor: one set for data expressed in customary units (temperature in °F, pressure in psig); the other for the metric system of units (temperature in °C, pressure in kPa or bar).NOTE 1: In contrast to the 1980 Petroleum Measurement Tables, the metric procedures require the procedure for customary units be used first to compute density at 60 °F. This value is then further corrected to give the metric output. The metric procedures now incorporate the base temperature of 20 °C in addition to 15 °C.1.4 The procedures in the Adjunct for VCF recognize three distinct commodity groups: crude oil, refined products, and lubricating oils. A procedure is also provided for determining volume correction for special applications where the generalized commodity groups’ parameters may not adequately represent the thermal expansion properties of the liquid and a precise thermal expansion coefficient has been determined by experiment. Procedures for determining Volume Correction Factors (VCF) for Denatured Ethanol can be found in API MPMS Chapter 11.3.3, Miscellaneous Hydrocarbon Properties—Denatured Ethanol Density and Volume Correction Factors, 3rd edition. Procedures for determining Volume Correction Factors (VCF) for Gasoline and Denatured Ethanol Blends can be found in API MPMS Chapter 11.3.4, Miscellaneous Hydrocarbon Properties—Denatured Ethanol and Gasoline Component Blend Densities and Volume Correction Factors, 1st edition.1.5 The values stated in either SI units or inch‐pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Accurate determination of the gravity of petroleum and its products is necessary for the conversion of measured volumes to volumes at the standard temperature of 60 °F (15.56 °C).5.2 This procedure is most suitable for determining the API gravity of low viscosity transparent liquids. This test method can also be used for viscous liquids by allowing sufficient time for the hydrometer to reach temperature equilibrium, and for opaque liquids by employing a suitable meniscus correction. Additionally for both transparent and opaque fluids the readings shall be corrected for the thermal glass expansion effect before correcting to the reference temperature.5.3 When used in connection with bulk oil measurements, volume correction errors are minimized by observing the hydrometer reading at a temperature as close to reference temperature as feasible.5.4 Gravity is a factor governing the quality of crude oils. However, the gravity of a petroleum product is an uncertain indication of its quality. Correlated with other properties, gravity can be used to give approximate hydrocarbon composition and heat of combustion.5.5 Gravity is an important quality indicator for automotive, aviation and marine fuels, where it affects storage, handling and combustion.1.1 This test method covers the determination by means of a glass hydrometer in conjunction with a series of calculations of the API gravity of crude petroleum and petroleum products normally handled as liquids and having a Reid vapor pressure (Test Method D323) of 14.696 psi (101.325 kPa) or less. Values are determined at existing temperatures and corrected to values at 60 °F (15.56 °C), or converted to values at 60 °F, by means of Adjunct to D1250 Standard Guide for the Use of the Joint API and ASTM Adjunct for Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils (API MPMS Chapter 11.1). These tables are not applicable to nonhydrocarbons or essentially pure hydrocarbons such as the aromatics.1.2 The initial values obtained are uncorrected hydrometer readings and not density measurements. Values are measured on a hydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternate calibration temperature effects and to the reference temperature by means of the petroleum measurement tables; values obtained at other than the reference temperature being hydrometer readings and not density measurements.1.3 The initial hydrometer readings determined shall be recorded before performing any calculations. Then the calculations required in Section 9 shall be performed and documented before using the final result in a subsequent calculation procedure (measurement ticket calculation, meter factor calculation, or base prover volume determination).1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statement, see 8.5.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This specification covers test methods and acceptance criteria for determining the acceptability of gear oils for applications that specify a lubricant meeting the performance requirements of API Category GL-5 service. Lubricants that meet these performance requirements are typically intended for use in automotive axles, particularly those containing hypoid gears, operating under various combinations of high-speed/shock-load and low-speed/high-torque conditions.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The density, relative density, or API gravity of petroleum products are important quality indicators and are used in quantity calculations or to satisfy application, transportation, storage, and regulatory requirements.5.2 This test method should not be used to determine density for custody transfer quantity calculations, particularly where mass or weight is the unit of quantity measurement. Test Method D4052 is appropriate for these applications.1.1 This test method covers the determination of the density, relative density, or API gravity of liquid petroleum products using portable digital density meters at test temperatures between 0 °C and 40 °C (32 °F to 104 °F). Its application is restricted to samples with a dry vapor pressure equivalent up to 80 kPa (11.6 psi) and a viscosity below 100 mm2/s (cSt) at the test temperature.1.2 This test method is suitable for determining the density to the nearest 1 kg/m3. To determine the density to the nearest 0.1 kg/m3, use Test Method D4052.1.3 This test method is easily calibrated and primarily suitable for field applications. It is important for the user to know and understand the electrical classification of the area in which the analyzer is to be used and to select an analyzer appropriate for that classification.1.4 Test Methods D287, D1298, and D6822 are used in field applications. This test method provides an alternative field method that is easily calibrated and does not pose the hazard of hydrometer glass breakage present in current field methods.1.5 Portable digital density meters measure the density and temperature of the filled-in sample at the sample temperature. The measured density and temperature are automatically converted into:Density at 15 °C / density at 60 °FRelative density 15 °C/15 °C / relative density 60 °F/60 °FAPI gravity 15 °C / API gravity 60 °Fby the instrument using the calculation routines for Generalized Products as defined in Guide D1250.1.6 If the density meter does not have in-built software to calculate the density at the reference temperature, this is calculated from the observed density at test temperature using the Petroleum Measurement Tables.1.7 The accepted units of measure for density are kilograms per cubic metre (SI unit) or grams per cubic centimetre. Values in SI units are to be regarded as the standard. Values in parentheses are for information only. Both SI and customary units have been rounded; they may not be exactly equivalent.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Accurate determination of the density, specific gravity, or API gravity of cutback asphalts is necessary for the conversion of measured volumes to volumes at the standard temperature of 15 °C or 60 °F.5.2 Similarly, accurate determination is necessary for converting volumes to mass as required in other ASTM tests on cutback asphalts.5.3 Values corrected to 15 °C and 60 °F will be different because the two temperatures are not equal.1.1 This test method covers the laboratory determination, using a glass hydrometer, of the density, specific gravity, or API gravity of cutback asphalts as defined in Specifications D2026, D2027, and D2028 (Note 1). Values are measured on a hydrometer at convenient temperatures, readings of density, specific gravity, and API gravity being reduced to 15 °C or 60 °F by means of international standard tables. By means of these same tables, values determined in one of the three systems of measurement are convertible to equivalent values in either system so that measurements may be made in the units of local convenience.NOTE 1: This test method is applicable to cutback asphalts and in general follows, but provides more explicit routines than, the procedure outlined in Test Method D1298.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Density is a fundamental physical property that can be used in conjunction with other properties to characterize both the light and heavy fractions of petroleum and petroleum products.5.2 Determination of the density or relative density of petroleum and its products is necessary for the conversion of measured volumes to volumes at the standard temperature of 15 °C.1.1 This test method covers the determination of the density, relative density, and API Gravity of petroleum distillates and viscous oils that can be handled in a normal fashion as liquids at the temperature of test, utilizing either manual or automated sample injection equipment. Its application is restricted to liquids with total vapor pressures (see Test Method D5191) typically below 100 kPa and viscosities (see Test Method D445 or D7042) typically below about 15 000 mm2/s at the temperature of test. The total vapor pressure limitation however can be extended to >100 kPa provided that it is first ascertained that no bubbles form in the U-tube, which can affect the density determination. Some examples of products that may be tested by this procedure include: gasoline and gasoline-oxygenate blends, diesel, jet, basestocks, waxes, and lubricating oils.1.1.1 Waxes and highly viscous samples were not included in the 1999 interlaboratory study (ILS) sample set that was used to determine the current precision statements of the method, since all samples evaluated at the time were analyzed at a test temperature of 15 °C. Wax and highly viscous samples require a temperature cell operated at elevated temperatures necessary to ensure a liquid test specimen is introduced for analysis. Consult instrument manufacturer instructions for appropriate guidance and precautions when attempting to analyze wax or highly viscous samples. Refer to the Precision and Bias section of the method and Note 9 for more detailed information about the 1999 ILS that was conducted.1.2 In cases of dispute, the referee method is the one where samples are introduced manually as in 6.2 or 6.3, as appropriate for sample type.1.3 When testing opaque samples, and when not using equipment that is capable of automatic bubble detection, proper procedure shall be established so that the absence of air bubbles in the U-tube can be established with certainty. For the determination of density in crude oil samples use Test Method D5002.1.4 The values stated in SI units are regarded as the standard, unless stated otherwise. The accepted units of measure for density are grams per millilitre (g/mL) or kilograms per cubic metre (kg/m3).1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 3.2.1, Section 7, 9.1, 10.2, and Appendix X1.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
10 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页