微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This specification covers requirements and test methods for flexible annular, corrugated profile wall polyethylene pipe with an interior liner. It covers nominal sizes 3 in. (75 mm), 4 in. (100 mm), 5 in. (125 mm), 6 in. (150 mm), 8 in. (200 mm), 10 in. (250 mm), 12 in. (300 mm), 15 in. (375 mm), 18 in (450 mm), and 24 in (600 mm).1.2 The requirements of this specification are intended to provide non-pressure (gravity flow) lined flexible annular corrugated polyethylene pipe for subsurface and land drainage systems, such as agricultural or foundations, which do not operate under surcharge pressure heads.NOTE 1: Pipe produced in accordance with this specification is to be installed in compliance with Practice F449. Lined flexible annular corrugated polyethylene provides axial flexibility allowing for subsurface installation using tile plows and allows the pipe to be coiled for storage and transport.NOTE 2: Subsurface and land drainage systems pertain principally to agricultural applications for water table control.NOTE 3: Lined flexible pipe provided in coiled lengths will experience distortion or folding in the interior pipe liner which may adversely affect flow characteristics, contact the pipe manufacturer for hydraulic design guidance for the coiled lined flexible pipe.1.3 This specification permits the use of recycled materials for pipe in accordance with the requirements in Section 5.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the minimum requirements for the pressure-temperature rating, testing, and making of pressure-containing vessels for entrainment separators. Entrainment separators covered in this specification shall be designed according to the lowest pressure-temperature rating of any individual component, or as established by proof tests. Test water temperature and entrainment separator temperature must be at equilibrium before hydrostatic test pressure is applied. All possible air pockets must be purged while the entrainment separator vessel is being filled with water. External equipment not to be pressurized with the entrainment separator should be isolated or disconnected before applying the hydrostatic test pressure. Hydrostatic test pressure shall be applied gradually to the entrainment separator and held stationary at each increment for a sufficient time in order that a visual inspection can be made for leaks or deformation of the vessel.1.1 This specification covers the minimum requirements for the pressure-temperature rating, testing, and making of pressure-containing vessels for entrainment separators.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following safety hazards caveat pertains only to the test methods portion, Section 6, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the chemical, mechanical, and metallurgical requirements for wrought cobalt-20chromium-15tungsten-10nickel alloy bars, rods, wires, sheets, and strips (except surgical fixation wires) for use in surgical implants. All alloys shall be furnished to the purchaser's specifications, in the annealed or cold-worked condition. Then, bars and wires shall be finished bright annealed, cold drawn, pickled, ground, or ground and polished, as specified by the purchaser. While, sheets shall be furnished bright annealed, pickled, cold-rolled, or polished, as specified by the purchaser. The alloys shall adhere to specified values of ultimate tensile strength, yield strength, elongation, and microcleanliness.1.1 This specification covers the chemical, mechanical, and metallurgical requirements for wrought cobalt-20chromium-15tungsten-10nickel alloy used for surgical implants. The properties specified apply specifically to wrought bar, rod, wire, sheet, and strip, but do not apply to surgical fixation wire (see Specification F1091).1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers the general requirements for thermal insulation block composed of rigid cellular glass intended for use in building exterior and interior walls, foundation, floor, ceiling, and roofing applications. The insulation blocks are intended for continuous use at temperatures between 200°F and −50°F (93.3°C and −45.6°C).1.2 This standard is intended to apply to rigid cellular glass thermal insulation block products that are commercially useful in building exterior and interior walls, foundation, floor, ceiling, and roofing construction. For engineering and design purposes, users need to follow specific product information provided by block manufacturers regarding physical properties, system design considerations and installation recommendations.1.3 The use of thermal insulation materials covered by this specification is typically regulated by building codes, or other agencies that address fire performance or both. Where required, the fire performance of the material shall be addressed through standard fire test methods established by the appropriate governing documents.1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. For conversion to metric units other than those contained in this standard, refer to IEEE/ASTM SI 10.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This guide references requirements that are intended to control the quality of NDT data. The purpose of this guide, therefore, is not to establish acceptance criteria and therefore approve composite materials or components for aerospace service.5.2 Following the discretion of the cognizant engineering organization, NDT for fracture control of composite and bonded materials should follow additional guidance described in MIL-HDBK-6870, NASA-STD-(I)-5019, or MSFC-RQMT-3479, or a combination thereof, as appropriate (not covered in this guide).5.3 Certain procedures referenced in this guide are written so they can be specified on the engineering drawing, specification, purchase order, or contract, for example, Practice E1742/E1742M (Radiography).5.4 Acceptance Criteria—Determination about whether a composite material or component meets acceptance criteria and is suitable for aerospace service should be made by the cognizant engineering organization. When examinations are performed in accordance with the referenced documents in this guide, the engineering drawing, specification, purchase order, or contract should indicate the acceptance criteria.5.4.1 Accept/reject criteria should consist of a listing of the expected kinds of imperfections and the rejection level for each.5.4.2 The classification of the articles under test into zones for various accept/reject criteria should be determined from contractual documents.5.4.3 Rejection of Composite Articles—If the type, size, or quantities of defects are found to be outside the allowable limits specified by the drawing, purchase order, or contract, the composite article should be separated from acceptable articles, appropriately identified as discrepant, and submitted for material review by the cognizant engineering organization, and dispositioned as (1) acceptable as is, (2) subject to further rework or repair to make the materials or component acceptable, or (3) scrapped when required by contractual documents.5.4.4 Acceptance criteria and interpretation of result should be defined in requirements documents prior to performing the examination. Advance agreement should be reached between the purchaser and supplier regarding the interpretation of the results of the examinations. All discontinuities having signals that exceed the rejection level as defined by the process requirements documents should be rejected unless it is determined from the part drawing that the rejectable discontinuities will not remain in the finished part.5.5 Life Cycle Considerations—The referenced NDT practices and test methods have demonstrated utility in quality assurance of PMCs during the life cycle of the product. The modern NDT paradigm that has evolved and matured over the last twenty–five years has been fully demonstrated to provide benefits from the application of NDT during: (a) product and process design and optimization, (b) on-line process control, (c) after manufacture inspection, (d) in-service inspection, and (e) health monitoring.5.5.1 In-process NDT can be used for feedback process control since all tests are based upon measurements which do not damage the article under test.5.5.2 The applicability of NDT procedures to evaluate PMC materials and components during their life cycle is summarized in Tables 3 and 4.(A) Applicable to composites used in storage and distribution of fluids and gases, for example, filament-wound pressure vessels.5.6 General Geometry and Size Considerations—Part contour, curvature, and surface condition may limit the ability of certain tests to detect imperfections with the desired accuracy.5.7 Reporting—Reports and records should be specified by agreement between purchaser and supplier. It is recommended that any NDT report or archival record contain information, when available, about the material type; method of fabrication; manufacturer’s name; part number; lot; date of lay-up or of cure, or both; date and pressure load of previous tests (for pressure vessels); and previous service history (for in-service and failed composite articles). Forwards and backwards compatibility of data, data availability, criticality (length of data retention), specification change, specification revision and date, software and hardware considerations will also govern how reporting is performed.1.1 This guide provides information to help engineers select appropriate nondestructive testing (NDT) methods to characterize aerospace polymer matrix composites (PMCs). This guide does not intend to describe every inspection technology. Rather, emphasis is placed on established NDT methods that have been developed into consensus standards and that are currently used by industry. Specific practices and test methods are not described in detail, but are referenced. The referenced NDT practices and test methods have demonstrated utility in quality assurance of PMCs during process design and optimization, process control, after manufacture inspection, in-service inspection, and health monitoring.1.2 This guide does not specify accept-reject criteria and is not intended to be used as a means for approving composite materials or components for service.1.3 This guide covers the following established NDT methods as applied to PMCs: Acoustic Emission (AE, Section 7); Computed Tomography (CT, Section 8); Leak Testing (LT, Section 9); Radiographic Testing, Computed Radiography, Digital Radiography, and Radioscopy (RT, CR, DR, RTR, Section 10); Shearography (Section 11); Strain Measurement (Contact Methods, Section 12); Thermography (Section 13); Ultrasonic Testing (UT, Section 14); and Visual Testing (VT, Section 15).1.4 The value of this guide consists of the narrative descriptions of general procedures and significance and use sections for established NDT practices and test methods as applied to PMCs. Additional information is provided about the use of currently active standard documents (an emphasis is placed on applicable standard guides, practices, and test methods of ASTM Committee E07 on Nondestructive Testing), geometry and size considerations, safety and hazards considerations, and information about physical reference standards.1.5 To ensure proper use of the referenced standard documents, there are recognized NDT specialists that are certified in accordance with industry and company NDT specifications. It is recommended that a NDT specialist be a part of any composite component design, quality assurance, in-service maintenance, or damage examination.1.6 This guide summarizes the application of NDT procedures to fiber- and fabric-reinforced polymeric matrix composites. The composites of interest are primarily, but not exclusively, limited to those containing high modulus (greater than 20 GPa (3×106 psi)) fibers. Furthermore, an emphasis is placed on composites with continuous (versus discontinuous) fiber reinforcement.1.7 This guide is applicable to PMCs containing, but not limited to, bismaleimide, epoxy, phenolic, poly(amide imide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers.NOTE 1: Per the discretion of the cognizant engineering organization, composite materials not developed and qualified in accordance with the guidelines in CMH-17, Volumes 1 and 3 should have an approved material usage agreement.1.8 The composite materials considered herein include uniaxial laminae, cross-ply laminates, angle-ply laminates, and sandwich constructions. The composite components made therefrom include filament-wound pressure vessels, flight control surfaces, and various structural composites.1.9 For current and potential NDT procedures for finding indications of discontinuities in the composite overwrap and thin-walled metallic liners in filament-wound pressure vessels, also known as composite overwrapped pressure vessels (COPVs), refer to Guides E2981 and E2982, respectively.1.10 For a summary of the application of destructive ASTM standard practices and test methods (and other supporting standards) to continuous-fiber reinforced PMCs, refer to Guide D4762.1.11 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

4.1 Use as an Analytical Tool—Mathematical methods provide an analytical tool to be employed for many applications related to absorbed dose determinations in radiation processing. Mathematical calculations may not be used as a substitute for routine dosimetry in some applications (for example, medical device sterilization, food irradiation).4.2 Dose Calculation—Absorbed-dose calculations may be performed for a variety of photon/electron environments and irradiator geometries.4.3 Evaluate Process Effectiveness—Mathematical models may be used to evaluate the impact of changes in product composition, loading configuration, and irradiator design on dose distribution.4.4 Complement or Supplement to Dosimetry—Dose calculations may be used to establish a detailed understanding of dose distribution, providing a spatial resolution not obtainable through measurement. Calculations may be used to reduce the number of dosimeters required to characterize a procedure or process (for example, dose mapping).4.5 Alternative to Dosimetry—Dose calculations may be used when dosimetry is impractical (for example, granular materials, materials with complex geometries, material contained in a package where dosimetry is not practical or possible).4.6 Facility Design—Dose calculations are often used in the design of a new irradiator and can be used to help optimize dose distribution in an existing facility or radiation process. The use of modeling in irradiator design can be found in Refs (2-7).4.7 Validation—The validation of the model should be done through comparison with reliable and traceable dosimetric measurements. The purpose of validation is to demonstrate that the mathematical method makes reliable predictions of dose and other transport quantities. Validation compares predictions or theory to the results of an appropriate experiment. The degree of validation is commensurate with the application. Guidance is given in the documents referenced in Annex A2.4.8 Verification—Verification is the confirmation of the mathematical correctness of a computer implementation of a mathematical method. This can be done, for example, by comparing numerical results with known analytic solutions or with other computer codes that have been previously verified. Verification should be done to ensure that the simulation is appropriate for the intended application. Refer to 3.1.24.NOTE 2: Certain applications of the mathematical model deal with Operational Qualification (OQ), Performance Qualification (PQ) and process control in radiation processing such as the sterilization of healthcare products. The application and use of the mathematical model in these applications may have to meet regulatory requirements. Refer to Section 6 for prerequisites for application of a mathematical method and Section 8 for requirements before routine use of the mathematical method.4.9 Uncertainty—An absorbed dose prediction should be accompanied by an estimate of overall uncertainty, as it is with absorbed-dose measurement (refer to ISO/ASTM 51707 and JCGM100:2008 and JCGM200:2012). In many cases, absorbed-dose measurement helps to establish the uncertainty in the dose calculation.4.10 This guide should not be used as the only reference in the selection and use of mathematical models. The user is encouraged to contact individuals who are experienced in mathematical modelling and to read the relevant publications in order to select the best tool for their application. Radiation processing is an evolving field and the references cited in the annotated examples of Annex A6 are representative of the various published applications. Where a method is validated with dosimetry, it becomes a benchmark for that particular application.1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose.1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document.1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV.1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods.1.5 This guide is limited to the use of general purpose software packages for the calculation of the transport of charged or uncharged particles and photons, or both, from various types of sources of ionizing radiation. This standard is limited to the use of these software packages or other mathematical methods for the determination of spatial dose distributions for photons emitted following the decay of 137Cs or 60Co, for energetic electrons from particle accelerators, or for X-rays generated by electron accelerators.1.6 This guide assists the user in determining if mathematical methods are a useful tool. This guide may assist the user in selecting an appropriate method for calculating absorbed dose. The user must determine whether any of these mathematical methods are appropriate for the solution to their specific application and what, if any, software to apply.NOTE 1: The user is urged to apply these predictive techniques while being aware of the need for experience and also the inherent limitations of both the method and the available software. Information pertaining to availability and updates to codes for modeling radiation transport, courses, workshops and meetings can be found in Annex A1. For a basic understanding of radiation physics and a brief overview of method selection, refer to Annex A3.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This specification provides the recommended criteria for specifying the construction of barrier systems for restricting access or ensuring human confinement, with the capability of defeating or seriously resisting any breaching attempts.1.2 No recommendation is made or implied as to the merits of the product of any particular manufacturer. Choice of product components selection for the barrier system should be made by the writers of the project based on their own perception of the merits of products for this application.1.3 The values stated in inch-pound units are to be regarded as the standard. The SI values stated in parentheses are provided for information only.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers requirements for copper alloy sand castings for general applications. The components part casting may be manufactured in advance and supplied from stock. The castings shall conform to the compositional requirements for named elements specified. Mechanical properties of copper alloys such as tensile strength, yield strength, and elongation shall be determined. The castings shall not be repaired, plugged, welded, or burned in.1.1 This specification covers requirements for copper alloy sand castings for general applications. Nominal compositions of the alloys defined by this specification are shown in Table 1.2 This is a composite specification replacing former documents as shown in Table 1.NOTE 1: Other copper alloy castings are included in the following ASTM Specifications: B22/B22M, B61, B62, B66, B67, B148, B176, B271/B271M, B369/B369M, B427, B505/B505M, B763/B763M, B770, and B806.1.2 Component part castings produced to this specification may be manufactured in advance and supplied from stock. In such cases the manufacturer shall maintain a general quality certification of all castings without specific record or date of casting for a specific casting.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers wall seamless and welded carbon and alloy steel pipe intended for use at low temperatures. The pipe shall be made by the seamless or welding process with the addition of no filler metal in the welding operation. All seamless and welded pipes shall be treated to control their microstructure. Tensile tests, impact tests, hydrostatic tests, and nondestructive electric tests shall be made in accordance to specified requirements.1.1 This specification2 covers nominal (average) wall seamless and welded carbon and alloy steel pipe intended for use at low temperatures and in other applications requiring notch toughness. Several grades of ferritic steel are included as listed in Table 1. Some product sizes may not be available under this specification because heavier wall thicknesses have an adverse effect on impact properties.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.NOTE 1: The dimensionless designator NPS (nominal pipe size) has been substituted in this standard for such traditional terms as “nominal diameter,” “size,” and “nominal size.”1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers fiberglass pipe fittings intended for use in gravity flow systems for conveying sanitary sewage, storm water, and those industrial wastes for which the fittings are determined to be suitable. Laminating resins shall be classified as Types 1 and 2. Reinforcements shall be classified as Grades 1 and 2. Ultimate tensile strength; maximum shear strength; and dimension tests shall be performed to conform the requirements specified.1.1 This specification covers fiberglass pipe fittings intended for use in gravity flow systems for conveying sanitary sewage, storm water, and those industrial wastes for which the fittings are determined to be suitable. Elbows, tees, laterals, crosses, reducers, and adapters are included. Both glass-fiber-reinforced thermosetting-resin pipe (RTRP) and glass-fiber-reinforced polymer mortar pipe (RPMP) are fiberglass pipes.NOTE 1: For the purposes of this standard, polymer does not include natural polymers.1.2 This specification is intended to cover only dimensions, material properties, and workmanship rather than the structural design of the fittings. The structural design of the fittings shall be as agreed upon between purchaser and supplier, and needs to take into consideration the anticipated conditions of installation and service.1.3 This specification covers only fittings fabricated from cut sections of pipe, or from a combination of pipe sections and contact molded (hand layup), or machine fabricated components.1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.1.5 The following safety hazards caveat pertains only to the test method portion, Section 11, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 2: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The methods in this practice are intended to aid in the assessment of long-term performance by comparative testing of absorptive materials. The results of the methods, however, have not been shown to correlate to actual in-service performance.4.2 The testing methodology in this practice provides two testing methods, in accordance with Fig. 1.FIG. 1 Outline of Test Method Options4.2.1 Method A, which aims at decreasing the time required for evaluation, uses a series of individual tests to simulate various exposure conditions.4.2.2 Method B utilizes a single test of actual outdoor exposure under conditions simulating thermal stagnation.4.2.3 Equivalency of the two methods has not yet been established.1.1 This practice covers a testing methodology for evaluating absorptive materials used in flat plate or concentrating collectors, with concentrating ratios not to exceed five, for solar thermal applications. This practice is not intended to be used for the evaluation of absorptive surfaces that are (1) used in direct contact with, or suspended in, a heat-transfer liquid, (that is, trickle collectors, direct absorption fluids, etc.); (2) used in evacuated collectors; or (3) used in collectors without cover plate(s).1.2 Test methods included in this practice are property measurement tests and aging tests. Property measurement tests provide for the determination of various properties of absorptive materials, for example, absorptance, emittance, and appearance. Aging tests provide for exposure of absorptive materials to environments that may induce changes in the properties of test specimens. Measuring properties before and after an aging test provides a means of determining the effect of the exposure.1.3 The assumption is made that solar radiation, elevated temperature, temperature cycles, and moisture are the primary factors that cause degradation of absorptive materials. Aging tests are described for exposure of specimens to these factors.NOTE 1: For some geographic locations, other factors, such as salt spray and dust erosion, may be important. They are not evaluated by this practice.1.4 The values stated in SI units are to be regarded as the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the chemical, mechanical, and metallurgical requirements for wrought annealed titanium-6aluminum-4vanadium ELI (extra low interstitial) alloy (R56401) to be used in the manufacture of surgical implants. The products are classified into: strip, sheet, plate, bar, forging bar, and wire. The heat analysis shall conform to the chemical composition requirements specified. Product analysis tolerances do not broaden the specified heat analysis requirements but cover variations between laboratories in the measurement of chemical content. Tension test and bend test shall be performed to meet the requirements specified.1.1 This specification covers the chemical, mechanical, and metallurgical requirements for wrought annealed titanium-6aluminum-4vanadium ELI (extra low interstitial) alloy (R56401) to be used in the manufacture of surgical implants.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This practice covers methods of testing, rating, and installation of internal combustion engine packages used in hazardous areas in marine applications. The purpose of this practice is to thermally rate engine packages, and provide additional installation recommendations to reduce the risk of igniting ignitable mixtures that may be present near the hazardous areas of marine vessels. In this specification, only a marine engine suitable for the service, designed and constructed in accordance with the requirements of 3.2.1, is considered. Thermal rating of the engine is determined by the actual readings of engine and exhausts system temperatures within hazardous areas, as defined by the requirements and references in Practices 2.2 and 2.3 or as designated by the authority.1.1 This practice covers the method of testing, rating and installation of internal combustion engine packages for use in hazardous areas in marine applications. The thermal rating of the engine is determined by the actual readings of engine and exhaust system temperatures within hazardous areas, as defined by references in Section 2 of this practice, or as designated by the authority having jurisdiction, or both. The goal of this practice is to thermally rate engine packages, and provide additional installation recommendations, in order to reduce the risk of igniting the ignitable mixtures that may be present within the hazardous areas of marine vessels.1.2 Only a marine engine suitable for the service, designed and constructed in conformance with the requirements of 3.1.2, is considered.1.3 The system of units in this practice shall be SI (metric) form, along with the standard (English) system equivalent placed in parentheses, for example, 20 °C (68 °F).1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is intended primarily for the testing of flat panel composites and sandwich core panels to an acceptance criteria most typically specified in a purchase order or other contractual document.5.2 Basis of Application—There are areas in this practice that require agreement between the cognizant engineering organization and the supplier, or specific direction from the cognizant engineering organization.1.1 This practice establishes two procedures for ultrasonic testing (UT) of flat panel composites and flat sandwich core panels (parallel surfaces). Typical as-fabricated lay-ups include uniaxial, cross ply and angle ply laminates; as well as honeycomb sandwich core materials. These procedures can be used throughout the life cycle of the materials; product and process design optimization, on line process control, after manufacture inspection, and in service inspection. Contact methods such as angle-beam techniques using shear waves, or surface-beam techniques using Lamb waves, are not discussed.1.2 Ultrasonic testing is a common subsurface method for detection of laminar oriented discontinuities. Two techniques can be considered based on panel surface accessibility; pulse echo for one sided and through transmission (bubblers/squirters) for two sided. As used in this practice, both require the use of a pulsed straight-beam ultrasonic longitudinal wave followed by observing indications of either the reflected (pulse-echo) or received (through transmission) wave. The general types of anomalies detected by both techniques include foreign materials, delamination, disbond/un-bond, fiber de-bonding, inclusions, porosity, and voids.1.3 This practice provides two ultrasonic test procedures. Each has its own merits and requirements for inspection and shall be selected as agreed upon in a contractual document.1.3.1 Test Procedure A, Pulse Echo (non-contacting and contacting), is at a minimum a single transducer transmitting and receiving a longitudinal wave in the range of 0.5 to 20 MHz (see Fig. 1). This procedure requires access to only one side of the specimen. This procedure can be conducted by automated or manual means. Automated and manual test results may be imaged or recorded.FIG. 1 Test Procedure A, Pulse Echo Apparatus Set-up1.3.2 Test Procedure B, Through Transmission, is a combination of two transducers. One transmits a longitudinal wave and the other receives the longitudinal wave in the range of 0.5 MHz to 20 MHz (see Fig. 2). This procedure requires access to both sides of the specimen. This procedure is automated and the examination results are recorded.FIG. 2 Test Procedure B, Through Transmission Apparatus Set-up1.4 This practice does not specify accept-reject criteria.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers sputtering targets fabricated from chromium metal for use in thin film applications. The grades of chromium covered in this specification, are based on the total metallic impurity content of the metallic elements, and are classified as 4N, 3N7, 3N5, 3N, and 2N8. Materials shall be tested using analytical methods such as combustion/infrared spectrometry, thermal conductivity, atomic absorption spectrometry, direct current plasma, inductively coupled plasma, and spark source mass spectroscopy or glow discharge mass spectroscopy; and the individual grades shall conform to specified values of chemical composition, density, grain size.1.1 This specification covers sputtering targets fabricated from chromium metal.1.2 This specification sets purity grade levels, physical attributes, analytical methods and packaging requirements.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
262 条记录,每页 15 条,当前第 1 / 18 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页