微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers requirements for fuel grade ethyl tertiary-butyl ether (ETBE) that may be used for blending with fuels for aviation spark-ignition engines where permissible. The requirements for ETBE that may be used for blending with fuels for aviation spark-ignition engines are given. The ETBE shall be visually free of undissolved water, sediment, and suspended matter that could render the material unacceptable for the intended application.1.1 This specification covers requirements for fuel grade ethyl tertiary-butyl ether (ETBE) that may be used for blending with fuels for aviation spark-ignition engines where permissible. Other ETBE grades available in the marketplace that do not comply with the requirements of this specification, are not suitable for blending with aviation fuels.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D1740-01 Standard Test Method for Luminometer Numbers of Aviation Turbine Fuels (Withdrawn 2006) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This test method covers the measurement of the flame radiation characteristics of aviation turbine fuels and other similar distillate fuels expressed in terms of luminometer numbers. There is good correlation between smoke point (Test Method D 1322) and luminometer number which is presented in .This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see , , , and Annex .

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method provides an indication of the relative smoke producing properties of kerosenes and aviation turbine fuels in a diffusion flame. The smoke point is related to the hydrocarbon type composition of such fuels. Generally the more aromatic the fuel the smokier the flame. A high smoke point indicates a fuel of low smoke producing tendency.5.2 The smoke point is quantitatively related to the potential radiant heat transfer from the combustion products of the fuel. Because radiant heat transfer exerts a strong influence on the metal temperature of combustor liners and other hot section parts of gas turbines, the smoke point provides a basis for correlation of fuel characteristics with the life of these components.1.1 This test method covers two procedures for determination of the smoke point of kerosene and aviation turbine fuel, a manual procedure and an automated procedure, which give results with different precision.1.2 The automated procedure is the referee procedure.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Specification D1655 provides a maximum permissible concentration (5.7 mg/L) of MDA in aviation turbine fuel. This test method will allow the quantification of MDA in aviation turbine fuels. The MDA additive is used for fuel thermal stability control and to reduce fuel degradation caused by the presence of trace metals (copper in particular) in aviation fuels.1.1 This test method covers the determination of the metal deactivator additive (MDA) content of aviation turbine fuels. The specific MDA determined and used to develop this test method is N,N′-disalicylidene-1,2-propanediamine. Other MDAs have not been tested by this test method.1.1.1 This test method specifically covers the determination of uncomplexed MDA content in aviation turbine fuel. MDA is a chelator of divalent metal ions, and the MDA-metal ion complexed species content of aviation turbine fuel will not be accounted for by this test method.1.2 This test method is divided into two procedures: (1) Procedure A uses a semi-portable capillary-liquid chromatography system (Capillary-HPLC) that may be used in the field or laboratory; (2) Procedure B uses a standard laboratory version of liquid chromatography (Conventional-HPLC). Procedures A and B have separate precisions.1.3 The test method has an interim repeatability determined in accordance with Practice D6300. Based on the mean values of the samples used in the interim repeatability study, Procedure A is applicable in the range of 0.50 mg/mL to 10.0 mg/mL; the range for Procedure B is 0.60 mg/mL to 9.6 mg/mL. Higher concentrations can be determined by dilution, but the precision of the test method has not been determined.1.3.1 An extended interlaboratory study (ILS) will be conducted in the future to determine the full repeatability and reproducibility and the final applicable concentration ranges.1.3.2 The test method applies to MDA in petroleum-based aviation fuels and Synthetic Aviation Fuels (SAF). However, for the interim precision, a petroleum-based aviation fuel was used. Future ILS will include petroleum-based and SAFs. The test method is applicable to aviation fuels conforming to Specification D1655.1.4 Appendix X2 indicates other additives that have been verified to not interfere with the analysis of this test method.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

The thermal stresses experienced by aviation fuel in modern jet engines may lead to the formation of undesirable and possibly harmful insoluble materials, such as lacquers, on heat exchangers and control surfaces, that reduce efficiency and require extra maintenance.Aircraft fuel systems operate mainly under turbulent flow conditions. Most large-scale realistic test rigs operate in the turbulent flow regime but fuel volumes are very large and test times are very long.This test method tests fuel under turbulent flow (high Reynolds number) conditions, and it gives a quantitative result under standard operating conditions of 65 or 125 min. Continuous analysis of results during the test allows performance of the fuel to be monitored in real time thus enabling the test time to be reduced manually or automatically, if required.The results of this test method are not expected to correlate with existing test methods for all fuels, since the test methods and operating conditions are different (see Appendix X2).1.1 This test method covers a laboratory thermal process, using a specified apparatus for measuring the tendencies of aviation turbine fuels to deposit insoluble materials and decomposition products, such as lacquers, within a fuel system. This test method provides a quantitative result for fuel under turbulent flow conditions in 65 or 125 min.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Wear due to excessive friction resulting in shortened life of engine components such as fuel pumps and fuel controls has sometimes been ascribed to lack of lubricity in an aviation fuel.5.2 The relationship of test results to aviation fuel system component distress due to wear has been demonstrated for some fuel/hardware combinations where boundary lubrication is a factor in the operation of the component.5.3 The wear scar generated in the ball-on-cylinder lubricity evaluator (BOCLE) test is sensitive to contamination of the fluids and test materials, the presence of oxygen and water in the atmosphere, and the temperature of the test. Lubricity measurements are also sensitive to trace materials acquired during sampling and storage. Containers specified in Practice D4306 shall be used.5.4 The BOCLE test method may not directly reflect operating conditions of engine hardware. For example, some fuels that contain a high content of certain sulfur compounds can give anomalous test results.1.1 This test method covers assessment of the wear aspects of the boundary lubrication properties of aviation turbine fuels on rubbing steel surfaces.1.1.1 This test method incorporates two procedures, one using a semi-automated instrument and the second a fully automated instrument. Either of the two instruments may be used to carry out the test.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This practice is intended to be used to assign part classifications across the aviation industries that use AM to produce parts.1.2 This practice is applicable to all AM technologies defined in ISO/ASTM 52900 used in aviation.1.3 This practice is intended to be used to establish a metric for AM parts in downstream documents.1.4 This practice is not intended to establish criteria for any downstream processes, but rather to establish a metric that these processes can use.1.5 The part classification metric could be utilized by the engineering, procurement, non-destructive inspection, testing, qualification, or certification processes used for AM aviation parts.1.6 The classification scheme in this practice establishes a consistent methodology to define and communicate the consequence of failure associated with AM aviation parts.1.7 This practice is not intended to supersede the requirements and definitions of the applicable regulations or policies, including but not limited to the ones listed in Annex A1.1.8 Tables A1.1-A1.3 align the existing regulations and guidance with the four part classes established herein. However, this alignment should not be construed as an alignment of the existing regulations to each other.1.9 The material or process, or both, in general does not affect the consequence of failure of a part, therefore the classification scheme defined in this document may be used outside AM.1.10 The user of this standard should not assume regulators’ endorsement of this standard as accepted mean of compliance.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The general approach to this practice is to serve as an “overlay” of requirements to the ASTM F3411-22a Standard Specification for Remote ID and Tracking by identifying mandatory portions, substituting values as needed, overriding items that may be optional, and providing additional requirements that are beyond the scope of Specification F3411, yet are necessary to provide proper guidance to meet the requirements set forth in Part 89.3.2 Furthermore, this practice provides additional details on minimal testing requirements for those submitting a DOC based on this MOC.1.1 This practice provides a Means of Compliance (MOC) that gives sufficient clarity to the Unmanned Aircraft System (UAS) or Broadcast Module manufacturers to produce a compliant Remote ID (RID) System (RIDS) such that submitting a Declaration of Compliance2 (DOC) to this MOC will satisfy the requirements of the Federal Aviation Administration (FAA) 14 CFR Part 89 (Part 89) rule.3 This practice also explains what to expect from aircraft operating in compliance to this MOC.1.2 The FAA provided three options to comply with the Remote ID regulations: Standard Remote ID UAS, Remote ID Broadcast Modules, and FAA-recognized identification areas (FRIAs). The scope of this MOC is to cover both Standard RID and RID Broadcast Modules.1.3 The FRIA portion of the rule is out of scope since it provides a means to avoid the technical RID requirements by operating within administrative boundaries.1.4 Both SI and non-SI units are used in this document. Since this is an aviation standard and it addresses FAA rules, some units are used in preference of being consistent with industry and regulatory norms.1.5 Table of Contents:Title Section 1Referenced Documents 2 3Subset of Options in the F3411 Specification Considered 4Requirements and Exceptions from the F3411 Specification 5Alternative Applications of Specification F3411 to Meet Part 89    Requirements 6MOC Requirements Not Covered by the Practice 7Test Methods 8Precision and Bias 9Satisfaction of Rule Requirements 10Keywords 11ANNEX A1—Simulation Option for Accuracy Testing Annex A1APPENDIX X1—External Device for GCS Location Source Rationale Appendix X1APPENDIX X2—Power Level Rationale Appendix X21.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 DiEGME is miscible with water and can be readily extracted from the fuel by contact with water during shipping and in storage. Methods are therefore needed to check the additive content in the fuel to ensure proper additive concentration in the aircraft.5.2 This test method is applicable to analyses performed in the field or in a laboratory.1.1 This test method covers a technique for measuring the concentration of Diethylene Glycol Monomethyl Ether (DiEGME) in aviation fuels. A measured volume of fuel, extracted with a fixed ratio of water, is tested with a suitable refractometer to determine the concentration of fuel system icing inhibitor (FSII) in fuel. Precision estimates have been determined for the DiEGME additive using specific extraction ratios with a wide variety of fuel types. The extraction ratios are high enough that portable handheld refractometers can be used, but not so high as to sacrifice accuracy or linearity, or both, in the 0.01 % to 0.25 % by volume range of interest.1.2 DiEGME is fully described in Specification D4171 and in other specifications.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice provides criteria for products used to measure particulate matter present in a sample of aviation turbine fuel. The objective is to verify that filters, support pads, and field monitors fall within the acceptable ranges that are established by this practice.1.1 This practice determines suitability of products used for measuring particulate contamination in aviation turbine fuel when using Test Methods D5452 and D2276.1.2 There are two major parts of this practice. The first is for evaluation of the cellulose acetate butyrate field monitors that are used in combination with the filters and the filter support pads. The second part is for evaluation of the filter when used with an appropriate cellulose acetate butyrate field monitor.1.3 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The results (of these tests) can be used to indicate storage stability of these fuels. The tendency of fuels to form gum and deposits in these tests has not been correlated with field performance (and can vary markedly) with the formation of gum and deposits under different storage conditions.1.1 This test method3 covers the determination of the tendency of aviation reciprocating, turbine, and jet engine fuels to form gum and deposits under accelerated aging conditions. (Warning—This test method is not intended for determining the stability of fuel components, particularly those with a high percentage of low boiling unsaturated compounds, as these may cause explosive conditions within the apparatus.)NOTE 1: For the measurement of the oxidation stability (induction period) of motor gasoline, refer to Test Method D525.1.2 The accepted SI unit of pressure is the kilo pascal (kPa); the accepted SI unit of temperature is °C.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended for use in the laboratory or field in evaluating aviation turbine fuel cleanliness.5.2 A change in filtration performance after storage, pretreatment, or commingling can be indicative of changes in fuel condition.5.3 Relative filterability of fuels may vary, depending on filter porosity and structure, and may not always correlate with results from this test method.5.4 Causes of poor filterability in industrial/refinery filters include fuel degradation products, contaminants picked up during storage or transfer, incompatibility of commingled fuels, or interaction of the fuel with the filter media. Any of these could correlate with orifice or filter system plugging, or both.1.1 This test method covers a procedure for determining the filterability of aviation turbine fuels (for other middle distillate fuels, see Test Method D6426).NOTE 1: ASTM specification fuels falling within the scope of this test method are Specifications D1655 and D6615 and the military fuels covered in the military specifications listed in 2.2.1.2 This test method is not applicable to fuels that contain undissolved water.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Supercharge method ratings can provide an indication of the rich-mixture antiknock performance of aviation gasoline in aviation piston engines.5.2 Supercharge method ratings are used by petroleum refiners and marketers and in commerce as a primary specification measurement to ensure proper matching of fuel antiknock quality and engine requirement.5.3 Supercharge method ratings may be used by aviation engine and aircraft manufacturers as a specification measurement related to matching of fuels and engines.1.1 This laboratory test method covers the quantitative determination of supercharge ratings of spark-ignition aviation gasoline. The sample fuel is tested using a standardized single cylinder, four-stroke cycle, indirect injected, liquid cooled, CFR engine run in accordance with a defined set of operating conditions.1.2 The supercharge rating is calculated by linear interpolation of the knock limited power of the sample compared to the knock limited power of bracketing reference fuel blends.1.3 The rating scale covers the range from 85 octane number to Isooctane + 6.0 mL TEL/U.S. gal.1.4 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pound units. The standardized CFR engine measurements and reference fuel concentrations continue to be in historical units.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Annex A1.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM D910-21 Standard Specification for Leaded Aviation Gasolines Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers purchases of aviation gasoline under contract and is intended primarily for use by purchasing agencies. This specification does not include all gasoline satisfactory for reciprocating aviation engines, but rather, defines the following specific types of aviation gasoline for civil use: Grade 80; Grade 91; Grade 100; and Grade 100LL. The gasoline shall adhere to octane rating requirements specified for individual grades, as follows: lean mixture knock value (motor octane number and aviation lean rating); rich mixture knock value (octane and performance number); tetraethyl lead content; color; and dye content (blue, yellow, red, and orange). Conversely, the gasoline shall meet the following requirements specified for all grades: density; distillation (initial and final boiling points, fuel evaporated, evaporated temperatures); recovery, residue, and loss volume; vapor pressure; freezing point; sulfur content; net heat of combustion; copper strip corrosion; oxidation stability (potential gum and lead precipitate); volume change during water reaction; and electrical conductivity.1.1 This specification covers formulating specifications for purchases of aviation gasoline under contract and is intended primarily for use by purchasing agencies.1.2 This specification defines specific types of aviation gasolines for civil use. It does not include all gasolines satisfactory for reciprocating aviation engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Chloride present in aviation turbine fuel can originate from refinery salt drier carryover or possibly from seawater contamination (for example, product transferred by barge). Elevated chloride levels have caused corrosive and abrasive wear of aircraft fuel control systems leading to engine failure.41.1 This test method covers a rapid means of determining chloride content of aviation turbine fuel. This methodology is applicable for chloride concentrations between 0 mg/L to 0.5 mg/L. This methodology will not detect chlorine originating from chlorinated organic compounds (that is, covalent bond).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
71 条记录,每页 15 条,当前第 1 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页