微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method evaluates the percent viscosity loss for polymer-containing fluids resulting from polymer degradation in the high shear nozzle device. Thermal or oxidative effects are minimized.5.2 This test method is used for quality control purposes by manufacturers of polymeric lubricant additives and their customers.5.3 This test method is not intended to predict viscosity loss in field service in different field equipment under widely varying operating conditions, which may cause lubricant viscosity to change due to thermal and oxidative changes as well as by the mechanical shearing of polymer. However, when the field service conditions, primarily or exclusively, result in the degradation of polymer by mechanical shearing, there may be a correlation between the results from this test method and results from the field.1.1 This test method covers the evaluation of the shear stability of polymer-containing fluids. The test method measures the percent viscosity loss at 100 °C of polymer-containing fluids when evaluated by a diesel injector apparatus procedure that uses European diesel injector test equipment. The viscosity loss reflects polymer degradation due to shear at the nozzle.NOTE 1: Test Method D2603 has been used for similar evaluation of shear stability; limitations are as indicated in the significance statement. No detailed attempt has been undertaken to correlate the results of this test method with those of the sonic shear test method.NOTE 2: This test method uses test apparatus as defined in CEC L-14-A-93. This test method differs from CEC-L-14-A-93 in the period of time required for calibration.NOTE 3: Test Method D5275 also shears oils in a diesel injector apparatus but may give different results.NOTE 4: This test method has different calibration and operational requirements than withdrawn Test Method D3945.NOTE 5: Test Method D7109 is a similar procedure that measures shear stability at both 30 and 90 injection cycles. This test method uses 30 injection cycles only.1.2 The values stated in SI units are to be regarded as the standard.1.2.1 Exception—Non-SI units are provided in parentheses.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

This specification deals with continuous grain flow carbon and alloy steel crankshaft forgings intended for medium speed diesel and natural gas engines. The steel used in the manufacture of the forgings is required to be vacuum degassed. Heat treatment, which may be done either before or after rough machining, shall consist of normalizing followed by tempering at a subcritical temperature, or austenitizing, liquid quenching and subcritical tempering. Charpy impact and tensile tests, which shall be performed at a frequency of one test per heat treatment load, shall be used to evaluate tensile strength, yield strength, elongation, reduction of area, and Brinell hardness requirements of forgings. Chemical composition requirements shall also be examined by heat analysis. Grain size tests and non-destructive magnetic particle examinations shall be conducted as well. When required by the purchaser, crankshafts may be surface hardened in designated areas for the purposes of enhanced wear resistance and fatigue strength.1.1 This specification covers continuous grain flow forged carbon and alloy steel crankshafts for medium speed diesel and natural gas engines.1.2 The steel used in the manufacture of the forgings is required to be vacuum degassed.1.3 The choice of steel composition grade for a given strength class is normally made by the forging supplier, unless otherwise specified by the purchaser.1.4 Provision is made for treatment of designated surfaces of the crankshaft to provide enhanced fatigue strength, or wear resistance, or both.1.5 Except as specifically required in this specification, all provisions of Specification A788/A788M apply.1.6 Unless the order specifies the applicable “M” specification designation, the material shall be furnished to the inch-pound units.1.7 The values stated in either inch-pound units or SI (metric) units are to be regarded separately as standard. Within the text and tables the SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The ICN value determined by this test method provides a measure of the ignition characteristics of diesel fuel oil used in compression ignition engines.5.2 This test can be used by engine manufacturers, petroleum refiners, fuel producers and in commerce as a specification aid to relate or match fuels and engines.5.3 The relationship of diesel fuel ICN determinations to the full scale, variable speed, variable load diesel engine is not completely understood.5.4 This test can be applied to non-conventional diesel fuels.5.5 This test determines ICN; it requires a sample of approximately 40 mL and a test time of approximately 25 min.5.6 This test method is based on the Energy Institute Test Method IP 617.1.1 This test method covers the quantitative determination of the indicated cetane number (ICN) of conventional diesel fuel oils, and diesel fuel oils containing cetane number improver additives; it is applicable to products typical of Specification D975, Grades No.1-D and 2-D diesel fuel oils, European standard EN 590, and Canadian standards CAN/CGSB-3.517 and CAN/CGSB-3.520. The test method is also applicable to biodiesel, blends of diesel fuel oils containing biodiesel material (for example, materials as specified in Specifications D975, D6751, D7467 and European standards EN 14214, EN 16734, and EN 16709), diesel fuels from non-petroleum origin, hydrocarbon oils, diesel fuel oil blending components, aviation turbine fuels, and polyoxymethylene dimethyl ether (OME).1.2 This test method utilizes a constant volume combustion chamber (CVCC) with direct fuel injection into heated compressed air. The apparatus is calibrated using blends of reference fuels. ICN is determined directly from ignition delay using an instrument specific reference fuel calibration curve.1.3 This test method and its precision cover the calibrated range of 35 ICN to 85 ICN, inclusive. The analyzer can measure ICN outside the calibrated range, but the precision has not been determined.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 7 on Hazards.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The ID and CD values and the DCN value determined by this test method provides a measure of the ignition characteristics of diesel fuel oil used in compression ignition engines.5.2 This test can be used by engine manufacturers, petroleum refiners and marketers, and in commerce as a specification aid to relate or match fuels and engines.5.3 The relationship of diesel fuel oil DCN determinations to the performance of full-scale, variable-speed, variable-load diesel engines is not completely understood.5.4 This test can be applied to non-conventional diesel fuels.5.5 This test determines ignition characteristics and requires a sample of approximately 370 mL and a test time of approximately 30 min using a fit-for-use instrument.1.1 This test method covers the quantitative determination of the derived cetane number of conventional diesel fuel oils, diesel fuel oils containing cetane number improver additives, and is applicable to products typical of Specification D975, Grades No.1-D and 2-D regular, low and ultra-low-sulfur diesel fuel oils, European standard EN590, and Canadian standards CAN/CGSB-3.517, CAN/CGSB-3.520, and CAN/CGSB-3.522. The test method may be applied to the quantitative determination of the derived cetane number of biodiesel, blends of diesel fuel oils containing biodiesel material (for example, Specifications D975, D6751, and D7467), and diesel fuel oil blending components.1.2 This test method utilizes a constant volume combustion chamber with direct fuel injection into heated, compressed synthetic air. A dynamic pressure wave is produced from the combustion of the sample. An equation converts the ignition delay and the combustion delay determined from the dynamic pressure curve to a derived cetane number (DCN).1.3 This test method covers the ignition delay ranging from 1.9 ms to 25 ms and combustion delay ranging from 2.5 ms to 160 ms (30 DCN to 70 DCN). However, the precision stated only covers the range of DCN results from 38.45 to 64.35.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Diesel fuel injection equipment has some reliance on lubricating properties of the diesel fuel. Shortened life of engine components, such as diesel fuel injection pumps and injectors, has sometimes been ascribed to lack of lubricity in a diesel fuel.5.2 The trend of SLBOCLE test results to diesel injection system pump component distress due to wear has been demonstrated in pump rig tests for some fuel/hardware combinations where boundary lubrication is believed to be a factor in the operation of the component.65.3 The tangential friction force, as measured in the SLBOCLE test, is sensitive to contamination of the fluids and test materials, the presence of oxygen and water in the atmosphere, and the temperature of the test. Lubricity evaluations are also sensitive to trace contaminants acquired during test fuel sampling and storage.5.4 The SLBOCLE and High-Frequency Reciprocating Rig (HFRR, Test Method D6079) are two methods for evaluating diesel fuel lubricity. No absolute correlation has been developed between the two test methods.5.5 The SLBOCLE may be used to evaluate the relative effectiveness of diesel fuels for preventing wear under the prescribed test conditions. If a standard SLBOCLE rating has been set, then the single-load test provides a more rapid evaluation than the incremental load test. Correlation of SLBOCLE test results with field performance of diesel fuel injection systems has not yet been determined.5.6 This test method is designed to evaluate boundary lubrication properties. While viscosity effects on lubricity in this test method are not totally eliminated, they are minimized.1.1 This test method covers the evaluation of the lubricity (load carrying ability) of diesel fuels using a scuffing load ball-on-cylinder lubricity evaluator (SLBOCLE).1.2 This test method is applicable to middle distillate fuels, such as Grades Low Sulfur No. 1 D, Low Sulfur No. 2 D, No. 1 D, and No. 2 D diesel fuels, in accordance with Specification D975; and other similar petroleum-based fuels which can be used in diesel engines.NOTE 1: It is not known that this test method will predict the performance of all additive/fuel combinations. Additional work is underway to further establish this correlation and future revisions of the standard may be necessary once this work is complete.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Biodiesel is a blendstock commodity primarily used as a value-added blending component with diesel fuel.5.2 This test method is applicable for quality control in the production and distribution of diesel fuel and biodiesel blends containing FAME.1.1 This test method covers the determination of the content of fatty acid methyl esters (FAME) biodiesel in diesel fuel oils. It is applicable to concentrations from 1.00 % to 20 % by volume (see Note 1). This procedure is applicable only to FAME. Biodiesel in the form of fatty acid ethyl esters (FAEE) will cause a negative bias.NOTE 1: Using the proper ATR sample accessory, the range may be expanded from 1 % to 100 % by volume, however precision data is not available above 20 % by volume.1.2 The values stated in SI units of measurement are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F1431-92(2021) Standard Specification for Water Trap for Diesel Exhaust Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers the material, dimensions, and construction of a water trap for diesel exhaust. The diesel exhaust water trap system shall consist of a tank and baffles manufactured from a nickel-chromium-molybdenum-columbium alloy, with gaskets made of nonmetallic materials. A minimum of three baffles shall be installed. The traps shall withstand the maximum temperatures specified, be free of paint, and be so designed such as to prevent sea backwash from entering the diesel exhaust system. The trap and piping systems shall prevent dirt accumulation, with the welding being of small, even beading, free of slag and splatter. Pneumatic proof testing of each trap shall be performed with no visible seam leakage and shall conform to the requirements specified.1.1 This specification covers the material, dimensions, and construction of diesel exhaust water traps, which shall be required whenever the exhaust is to be expelled through the hull of the vessel.1.2 The traps are designed to prevent sea backwash from entering the diesel exhaust system.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method evaluates the percent viscosity loss of fluids resulting from physical degradation in the high shear nozzle device. Thermal or oxidative effects are minimized.5.2 This test method may be used for quality control purposes by manufacturers of polymeric lubricant additives and their customers.5.3 This test method is not intended to predict viscosity loss in field service in different field equipment under widely varying operating conditions, which may cause lubricant viscosity to change due to thermal and oxidative changes, as well as by the mechanical shearing of polymer. However, when the field service conditions, primarily or exclusively, result in the degradation of polymer by mechanical shearing, there may be a correlation between the results from this test method and results from the field.1.1 This test method covers the evaluation of the shear stability of polymer-containing fluids. The test method measures the viscosity loss, in mm2/s and percent, at 100 °C of polymer-containing fluids when evaluated by a diesel injector apparatus procedure that uses European diesel injector test equipment. The viscosity loss reflects polymer degradation due to shear at the nozzle. Viscosity loss is evaluated after both 30 cycles and 90 cycles of shearing.NOTE 1: This test method evaluates the shear stability of oils after both 30 cycles and 90 cycles of shearing. For most oils, there is a correlation between results after 30 cycles and results after 90 cycles of shearing, but this is not universal.NOTE 2: Test Method D6278 uses essentially the same procedure with 30 cycles but without the 90 cycles portion of the test. The correlation between results from this test method at 30 cycles and results from Test Method D6278 has been established and shown in Research Report RR:D02-1629 to be equivalent.NOTE 3: Test Method D2603 has been used for similar evaluation of shear stability; limitations are as indicated in the significance statement. No detailed attempt has been undertaken to correlate the results of this test method with those of the sonic shear test method.NOTE 4: This test method uses test apparatus as defined in CEC L-14-A-93. This test method differs from CEC-L-14-A-93 in the period of time required for calibration.NOTE 5: Test Method D5275 also shears oils in a diesel injector apparatus but may give different results.NOTE 6: This test method has different calibration and operational requirements than withdrawn Test Method D3945.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Diesel fuel injection equipment has some reliance on lubricating properties of the diesel fuel. Shortened life of engine components, such as diesel fuel injection pumps and injectors, has sometimes been ascribed to lack of lubricity in a diesel fuel.5.2 The trend of HFRR test results to diesel injection system pump component distress due to wear has been demonstrated in pump rig tests for some fuel/hardware combinations where boundary lubrication is believed to be a factor in the operation of the component.65.3 The wear scar generated in the HFRR test is sensitive to contamination of the fluids and test materials, the temperature of the test fuel, and the ambient relative humidity. Lubricity evaluations are also sensitive to trace contaminants acquired during test fuel sampling and storage.5.4 The HFRR and Scuffing Load Ball on Cylinder Lubricity Evaluator (SLBOCLE, Test Method D6078) are two methods for evaluating diesel fuel lubricity. No absolute correlation has been developed between the two test methods.5.5 The HFRR may be used to evaluate the relative effectiveness of diesel fuels for preventing wear under the prescribed test conditions. Correlation of HFRR test results with field performance of diesel fuel injection systems has not yet been determined.5.6 This test method is designed to evaluate boundary lubrication properties. While viscosity effects on lubricity in this test method are not totally eliminated, they are minimized.1.1 This test method covers the evaluation of the lubricity of diesel fuels using a high-frequency reciprocating rig (HFRR).1.2 This test method is applicable to middle distillate fuels, such as Grades No. 1-D S15, S500, and S5000, and Grades No. 2-D S15, S500, and S5000 diesel fuels, in accordance with Specification D975; and other similar petroleum-based fuels which can be used in diesel engines. This test method is applicable to biodiesel blends. B5 was included in the round robin program that determined the precision statement.NOTE 1: It is not known that this test method will predict the performance of all additive/fuel combinations. Additional work is underway to establish this correlation and future revisions of this test method may be necessary once this work is complete.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended to simulate the corrosion process of non-ferrous metals in diesel lubricants. The corrosion process under investigation is that believed to be induced primarily by inappropriate lubricant chemistry rather than lubricant degradation or contamination. This test method has been found to correlate with an extensive fleet database containing corrosion-induced cam and bearing failures.31.1 This test method covers testing diesel engine lubricants to determine their tendency to corrode various metals, specifically alloys of lead and copper commonly used in cam followers and bearings.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method was developed to evaluate the wear performance of engine oils in turbocharged and intercooled four-cycle diesel engines. Obtain results from used oil analysis and component measurements before and after test.The test method may be used for engine oil specification acceptance when all details of the procedure are followed.1.1 This test method covers an engine test procedure for evaluating diesel engine oils for performance characteristics, including lead corrosion and wear of piston rings and cylinder liners. This test method is commonly referred to as the Mack T-9.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Annex A5 for specific safety precautions.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Some fuel dilution of the engine oil may take place during normal operation. However, excessive fuel dilution is of concern in terms of possible performance problems. This method provides a means to determine the magnitude of the fuel dilution, providing the user with the ability to predict performance and to take appropriate action.1.1 This test method covers the use of gas chromatography to determine the amount of diesel fuel in used engine lubricating oil. This test is limited to SAE 30 oil. The diesel fuel diluent is analyzed at concentrations up to 12 % by mass.NOTE 1: This test method may be applicable to higher viscosity grade oils. However, such oils were not included in the program used to develop the precision statement.1.2 This test method is limited to gas chromatographs equipped with flame ionization detectors and temperature programmable ovens.NOTE 2: The use of other detectors and instrumentation has been reported. However, the precision statement applies only when the instrumentation specified is employed.1.3 There is some overlap of the boiling ranges of diesel fuel and SAE 30 engine oils. Moreover, the boiling range of SAE 30 oils from various sources can vary appreciably. As a result, the calibration can be altered by as much as 2 %, in terms of fuel dilution. When testing unknown or mixed brands of used engine oil, it should be realized that the precision of the method may be poorer than the precision obtained when calibrating with a new oil representative of the used oil being tested.1.4 The values stated in SI units are to be regarded as the standard. The values stated in inch-pound units are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory requirements prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The aromatic hydrocarbon content of motor diesel fuels is a factor that can affect their cetane number and exhaust emissions.5.2 The United States Environmental Protection Agency (USEPA) regulates the aromatic content of diesel fuels. California Air Resources Board (CARB) regulations place limits on the total aromatics content and polynuclear aromatic hydrocarbon content of motor diesel fuel, thus requiring an appropriate analytical determination to ensure compliance with the regulations. Producers of diesel fuels will require similar determinations for process and quality control. This test method can be used to make such determinations.5.3 This test method is applicable to materials in the boiling range of motor diesel fuels and is unaffected by fuel coloration. Test Method D1319, which has been mandated by the USEPA for the determination of aromatics in motor diesel fuel, excludes materials with final boiling points greater than 315 °C (600 °F) from its scope. Test Method D2425 is applicable to the determination of both total aromatics and polynuclear aromatic hydrocarbons in diesel fuel, but is much more costly and time consuming to perform.5.4 Results obtained by this test method have been shown to be statistically more precise than those obtained from Test Method D1319 for typical diesel fuels, and this test method has a shorter analysis time.3 Results from this test method for total polynuclear aromatic hydrocarbons are also expected to be at least as precise as those of Test Method D2425.1.1 This test method covers the determination of the total amounts of monoaromatic and polynuclear aromatic hydrocarbon compounds in motor diesel fuels and blend stocks by supercritical fluid chromatography (SFC). The range of aromatics concentration to which this test method is applicable is from 1 % to 75 % by mass. The range of polynuclear aromatic hydrocarbon concentrations to which this test method is applicable is from 0.5 % to 50 % by mass.1.2 This test method includes relative bias for Test Method D5186 versus Test Method D1319 and Test Method D6591 versus Test Method D5186 for diesel fuels. The applicable ranges of the correlation ranges are presented in the Relative Bias section. The correlations are applicable only in the stated ranges and only to diesel fuels.1.3 This test method and correlations were developed for diesel samples not containing biodiesel; the presence of biodiesel will interfere with the results. The correlation equations are only applicable between these concentration ranges and to diesel fuels that do not contain biodiesel.1.4 The values stated in SI units are to be regarded as standard. The values stated in inch-pound units are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Comparison of brake horsepower developed and of specific fuel consumption rates from engine to engine may be made by use of data based upon a standard for composition of an engine assembly.4.2 The purchaser of the engine assembly will be fully advised of the minimum scope of assembly which the purchaser may rightfully expect to be encompassed by a response to a request for quotation and to be delivered in response to a purchase order unless the engine builder in the proposal or in the offer to sell has clearly advised otherwise.4.3 It will be made apparent to the purchaser that additional auxiliary and accessory equipment will be needed to supplement the defined engine assembly when full consideration is given to the application of the engine assembly as a prime mover in a specific vessel.1.1 This guide covers performance and minimum scope of assembly of all medium speed marine diesel engines intended for main propulsion of single or multiple screw propelled marine vessels or for vessels using other than screw propeller-type main propulsion.1.2 This guide is intended to supplement the regulations of legally constituted regulating authorities. In the event of any conflict, which may become apparent after publication of this guide, with such legally constituted regulations, the latter shall take precedence, as may be applicable within the jurisdiction of such authorities and specific to each case, unless such latter regulations are formally waived by proper cognizant authority.1.3 This guide is not intended to relieve the purchaser of the obligation fully to advise the engine builder of all of the purchaser’s unique operational considerations to allow those considerations to be satisfied.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification deals with nationally recognized requirements for the cautionary information to be placed on the label of portable kerosine and diesel containers for consumer use. It is not the intent of this specification to preclude any other labeling requirements, such as those set forth in Federal Hazardous Substances Act (FHSA) or other applicable regulations and standards. Information on warning labels which appear on the containers will help ensure the proper information is being presented to the consumer, concerning methods of handling kerosine and diesel fuels.1.1 This specification establishes nationally recognized requirements for the cautionary information to be placed on the label of portable kerosine and diesel containers for consumer use. It is not the intent of this specification to preclude any other labeling requirements, such as those set forth in Federal Hazardous Substances Act (FHSA) or other applicable regulations and standards.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
60 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页