微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Vibration encountered in the field is not usually simple harmonic.3.2 This test can be used to determine relative motion between parts, critical frequencies, adhesion strengths, loosening of parts or other physical effects that can cause fatigue or failure.3.3 Experience has shown that this test will expose potential failures associated with the electronic components of a membrane switch, where tests of lower levels will not.3.4 This practice can be used to qualify a membrane switch for aerospace, medical and other applications.3.5 This test is potentially destructive, intended for device qualification.3.6 Either Test Condition A or B can be chosen, based upon the intent of the test determined by the qualified engineer.1.1 This test method establishes procedures for determining the effect of sinusoidal vibration, within the specified frequency range, on switch contacts, mounting hardware, adhered component parts, solder or heat stakes, tactile devices, and cable or ribbon interconnects associated with a membrane switch or membrane switch assembly.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method indicates approximate change in properties of asphalt during conventional hot-mixing at about 302 °F (150 °C) as indicated by viscosity and other rheological measurements. It yields a residue which approximates the asphalt condition as incorporated in the pavement. If the mixing temperature differs appreciably from the 302 °F (150 °C) level, more or less effect on properties will occur. This test method can also be used to determine mass change, which is a measure of asphalt volatility.NOTE 1: The quality of results produced by this standard is dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guidance provides a means of evaluating and controlling some of those factors.1.1 This test method is intended to measure the effect of heat and air on a moving film of semi-solid asphaltic materials. The effects of this treatment are determined from measurements of the selected properties of the asphalt before and after the test.1.2 The values stated in inch-pound units are to be regarded as the standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This guide is intended as a guideline for fluid analysis programs and serves as an initial justification for selecting fluid tests and sampling frequencies. Plant operating experience along with the review and benchmarking of similar applications is required to ensure that lessons learned are implemented.5.2 Selection of proper fluid tests for assessing in-service component condition may have both safety and economic implications. Some failure modes may cause component disintegration, increasing the safety hazard. Thus, any fluid test that can predict such conditions should be included in the condition-monitoring program. Conversely, to maintain a sustainable and successful fluid-monitoring program, the scope of the fluid tests and their frequency should be carefully balanced between the associated risks versus expected program cost savings and benefits.5.3 The failure modes monitored may be similar from one application to the next, but the risk and consequences of failure may differ.5.4 This analysis can be used to determine which in-service lubricant analysis tests would be of highest value and which would be ineffective for the failure modes of interest. This information can also be used to determine the best monitoring strategy for a suite of failure modes and how often assessment is needed to manage the risk of failure.1.1 This guide describes a methodology to select tests to be used for in-service lubricant analysis. The selection of fluid tests for monitoring failure mode progression in industrial applications applies the principles of failure mode and effect analysis (FMEA).1.2 Although typical FMEA addresses all possible product failure modes, the focus of this guide is not intended to address failures that have a very high probability of unsafe operation as these should immediately be addressed by other means.1.3 This guide is limited to components selected for condition-monitoring programs by providing a methodology to choose fluid tests associated with specific failure modes for the purpose of identifying their earliest developing stage and monitoring fault progression. The scope of this guide is also focused on those failure modes and their consequences that can effectively be detected and monitored by fluid analysis techniques.1.4 This guide pertains to a process to be used to ensure an appropriate amount of condition monitoring is performed with the objective of improving equipment reliability, reducing maintenance costs, and enhancing fluid analysis monitoring of industrial machinery. This guide can also be used to select the monitoring frequencies needed to make the failure determinations and provide an assessment of the strengths and weaknesses of a current condition-monitoring program.1.5 This guide does not eliminate the programmatic requirements for appropriate assembly, operational, and maintenance practices.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is of significance in making a final determination of the acceptability of fine aggregates with respect to the requirements of Specification C33/C33M concerning organic impurities.5.2 This test method is applicable to those samples which, when tested in accordance with Test MethodC40/C40M, have produced a supernatant liquid with a color darker than the standard listed in Table 1 of C40/C40M (Organic plate No. 3, Gardner Color Standard No. 14, Circular Disk No. 14 or prepared color solution).5.3 Many specifications provide for the acceptance of fine aggregate producing a darker color in the Test Method C40/C40M test, if testing by this test method indicates the strength of the mortar cubes prepared with the unwashed fine aggregate is comparable to the strength of mortar cubes made with the washed fine aggregate.1.1 This test method covers the determination of the effect on mortar strength of the organic impurities in fine aggregate, whose presence is indicated using Test Method C40/C40M. Comparison is made between compressive strengths of mortar made with washed and unwashed fine aggregate.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Some values have only SI units because the inch-pound equivalents are not used in the practice.NOTE 1: Sieve size is identified by its standard designation in Specification E11. The alternative designation given in parentheses is for information only and does not represent a different standard sieve size1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.(Warning—Fresh hydraulic cementitous mixtures are caustic and may cause chemical burns to exposed skin and tissue upon prolonged exposure.)21.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Most coatings are designed for a specific baking time and temperature. For a variety of reasons (line stoppages, rerouting back through ovens, oven overheating, etc.) the prescribed time or temperature, or both, of the bake is often exceeded. This practice has been found to be useful in evaluating the effects of overbakes on coatings.1.1 This practice covers the determination of the time-temperature effect of overbaking on the physical and chemical properties of organic coatings.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This guide is intended for use by those undertaking the development of fire hazard assessments for upholstered seating furniture in health care occupancies.4.2 As a guide this document provides information on an approach to development of a fire hazard assessment, but fixed procedures are not established. Section 1.7 describes some cautions to be taken into account.4.3 A fire hazard assessment developed following this guide should specify all steps required to determine fire hazard measures for which safety thresholds or pass/fail criteria can be meaningfully set by responsible officials using the standard.4.4 A fire hazard assessment developed as a result of using this guide should be able to assess a new item of upholstered seating furniture being considered for use in a certain health care facility, and reach one of the conclusions in 4.4.1 – 4.4.4.4.4.1 The new upholstered seating furniture item is safer, in terms of predicted fire performance, than the one in established use. Then, the new product would be desirable, from the point of view of fire safety.4.4.2 There is no difference between the predicted fire safety of the new item and the one in established use. Then, there would be neither advantage nor disadvantage in using the new product, from the point of view of fire safety.4.4.3 The new upholstered seating furniture item is predicted to be less safe, in terms of fire performance, than the one in established use. Then, the new item would be less desirable, from the point of view of fire safety than the one in established use.4.4.3.1 If the new upholstered furniture item is predicted to be less safe, in terms of fire performance, than the one in established use, a direct substitution of the products would provide a lower level of safety and the new product should not be used, without other compensatory changes being made. A new upholstered furniture product can, however, be made acceptable if, and only if, it is part of a complete, comprehensive, fire safety design for the patient room. Such a patient room redesign should include one or more of the following features: use of an alternative layout (albeit one that cannot be altered by the patient room users) or increased use of automatic fire protection systems or changes in other furnishings or contents. In such cases, a more in-depth fire hazard assessment should be conducted to ensure that all of the changes together have demonstrated a predicted level of fire safety for the new design which is at least equal to that for the design in established use, in order to permit the use of the new upholstered seating furniture item.4.4.3.2 Alternatively, the new design may still be acceptable if the predicted level of fire safety is commensurate with new stated fire safety objectives developed in advance.4.4.4 The new upholstered seating furniture item offers some safety advantages and some safety disadvantages over the item in established use. An example of this outcome could be increased smoke obscuration with decreased heat release. Then, a more in depth fire hazard assessment would have to be conducted to balance the advantages and disadvantages.4.5 If the patient room does not contain an upholstered seating furniture item, then the fire hazard assessment implications of the introduction of an upholstered seating furniture item should be analyzed in the same way as in 4.4. The fire safety should then be compared with that achieved in the room in established use (which has no upholstered seating furniture). The same analysis would also apply if an additional upholstered furniture item is being considered for introduction in a patient room: the fire hazard assessment should compare the fire safety implications of the addition.4.5.1 An additional upholstered furniture item adds to the fuel load of a room. Thus, an analysis such as that in 4.4 would offer options 4.4.2 through 4.4.4 only.4.6 Following the analysis described in 4.4, a fire hazard assessment developed following the procedures in this guide would reach a conclusion regarding the desirability of the furniture product studied.4.7 An alternative to the analysis based on the anticipated fire performance of the materials or products contained in the patient room is the use of active fire protection measures, such as fire suppression sprinklers. Active fire protection involves measures such as automatic sprinklers and alarm systems, while passive fire protection involves using materials that are difficult to burn and give off low heat and smoke if they do burn. Traditional prescriptive requirements are based exclusively on passive fire protection, with the common approach being to describe the fire tests to be met for every property. The opposite extreme is based entirely on active fire protection, which assumes that active fire protection measures (mostly sprinklers) ensure fire safety. The fire safety record of sprinklers is excellent, but not flawless. Moreover, neither approach gives the type of flexibility that is the inherent advantage of fire hazard and fire risk assessments.4.7.1 Note that the activation of automatic fire suppression sprinklers does not ensure a safe level of smoke obscuration.4.8 This guide provides information on a different type of fire hazard assessment than Guide E2061. While Guide E2061 considers an entire occupancy, namely a rail transportation vehicle, this guide addresses a specific product, namely upholstered furniture.1.1 This is a guide to developing fire hazard assessments for upholstered seating furniture, within patient rooms of health care occupancies. As such, it provides methods and contemporary fire safety engineering techniques to develop a fire hazard assessment for use in specifications for upholstered seating furniture in such occupancies.1.2 Hazard assessment is an estimation of the potential severity of the fires that can develop with certain products in defined scenarios, once the incidents have occurred. Hazard assessment does not address the likelihood of a fire occurring, but is based on the premise that an ignition has occurred.1.3 Because it is a guide, this document cannot be used for regulation, nor does it give definitive instructions on how to conduct a fire hazard assessment.1.4 This guide is intended to provide assistance to those interested in mitigating the potential damage from fires associated with upholstered furniture in patient rooms in health care occupancies.1.5 Thus, this guide can be used to help assess the fire hazard of materials, assemblies, or systems intended for use in upholstered furniture, by providing a standard basis for studying the level of fire safety associated with certain design choices. It can also aid those interested in designing features appropriate to health care occupancies. Finally, it may be useful to safety personnel in health care occupancies.1.6 This guide is a focused application of Guide E1546, which offers help in reference to fire scenarios that are specific to upholstered furniture in health care occupancies, and includes an extensive bibliography. It differs from Guide E1546 in that it offers guidance that is specific to the issue of upholstered furniture in patient rooms of health care facilities, rather than general guidance. Appendix X11 includes some statistics on the magnitude of the potential problem in the U.S.1.7 A fire hazard assessment conducted in accordance with this guide is strongly dependent on the limitations in the factors described in 1.7.1 – 1.7.4.1.7.1 Input data (including their precision or accuracy).1.7.2 Appropriate test procedures.1.7.3 Fire models or calculation procedures that are simultaneously relevant, accurate and appropriate.1.7.4 Advancement of scientific knowledge.1.8 This guide addresses specific fire scenarios which begin inside or outside of the patient room. However, the upholstered furniture under consideration is inside the patient room.1.9 The fire scenarios used for this hazard assessment guide are described in 9.2. They involve the upholstered furniture item within the patient room as the first or second item ignited, in terms of the room of fire origin. Additionally, consideration should be given to the effect of the patient room upholstered furniture item on the tenability of occupants of rooms other than the room of fire origin, and on that of potential rescuers.1.10 This guide does not claim to address all fires that can occur in patient rooms in health care occupancies. In particular, fires with more severe initiating conditions than those assumed in the analysis may pose more severe fire hazard than that calculated using this guide (see also 9.5).1.11 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This fire standard cannot be used to provide quantitative measures.1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 The intent of this test method is to determine properties of direct-applied SFRM that may be used to provide an indication of serviceability. Satisfactory performance of fire-resistive material applied to structural members and assemblies depends upon its ability while in place to withstand the various influences that may occur during the life of the structure, as well as upon its satisfactory performance under fire tests.4.2 This test method measures the behavior of SFRM when subjected to deflection and evaluates such phenomena as spalling and delamination under bending stress. It is an indication of the ability of SFRM to remain in place and resist removal during anticipated service conditions.1.1 This test method covers a procedure for determining the effect of deflection on sprayed fire-resistive material (SFRM) applied to steel deck. These materials include sprayed fibrous and cementitious materials applied directly in contact with the structural members. The test method is applicable only to laboratory procedures.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The intent of this test method is to determine a property of SFRM that may be used to provide an indication of its in-place serviceability. Satisfactory performance of SFRM applied to structural members and assemblies depends upon its ability to withstand the various influences that may occur during construction and during the life of the structure, as well as upon its satisfactory performance under fire conditions.4.2 The test method measures the behavior of SFRM when the floor construction to which it is applied is subjected to shock loading and evaluates adhesion and resistance to spalling, cracking, and delamination. It is an indication of the ability of SFRM to remain in place and resist removal during anticipated service conditions.1.1 This test method covers a procedure for determining the effect of impact loading on the bonding of sprayed fire-resistive material (SFRM) applied to the underside of steel floor deck. These materials include sprayed fibrous and cementitious materials applied directly in contact with the structural members. The test method is applicable only to laboratory procedures.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it.5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state.5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run.5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined. The four water treatment levels may be tested individually, all four simultaneously, or any combination of multiple water treatment levels.5.5 Reference oils, on which the data obtained by this test method is known, are available.5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.NOTE 1: When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil.1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it.5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state.5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run.5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined.5.5 Reference oils, on which the data obtained by this test method is known, are available.5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.NOTE 1: When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil.1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Certain rubber articles, for example, seals, gaskets, hoses, diaphragms, and sleeves, may be exposed to oils, greases, fuels, and other fluids during service. The exposure may be continuous or intermittent and may occur over wide temperature ranges.4.2 Properties of rubber articles deteriorate during exposure to these liquids, affecting the performance of the rubber part, which can result in partial failure.4.3 This test method attempts to simulate service conditions through controlled accelerated testing, but may not give any direct correlation with actual part performance, since service conditions vary too widely. It yields comparative data on which to base judgment as to expected service quality.4.4 This test method is suitable for specification compliance testing, quality control, referee purposes, and research and development work.1.1 This test method covers the required procedures to evaluate the comparative ability of rubber and rubber-like compositions to withstand the effect of liquids. It is designed for testing: (1) specimens of vulcanized rubber cut from standard sheets (see Practice D3182), (2) specimens cut from fabric coated with vulcanized rubber (see Test Methods D751), or (3) finished articles of commerce (see Practice D3183). This test method is not applicable to the testing of cellular rubbers, porous compositions, and compressed sheet packing, except as described in 12.2.2.1.2 Periodically, it is necessary to produce a new lot of an IRM oil to replace the dwindling supply of the current product. The Chairman of the subcommittee shall have the authority to approve the production of a replacement lot. Once produced, the technical data of the new lot shall be presented, in a comparative fashion, to that of the existing lot and balloted upon by the membership of the D11.15 subcommittee and, either subsequently or concurrently, balloted upon by the membership of the D11 main committee for approval to release the new lot for distribution.1.3 In the event that an IRM oil becomes unavailable for distribution due to depletion, the Chairman of the subcommittee shall have the authority to approve production of a new lot and, after a meeting of the task group, regularly scheduled, or not, to release a quantity of the product for distribution sufficient enough only to address a backlog. Once the backlog is addressed, the process described in 1.2 shall be followed.1.4 ASTM Oils No. 2 and No. 3, formerly used in this test method as standard test liquids, are no longer commercially available and in 1993 were replaced with IRM 902 and IRM 903, respectively (see Appendix X1 for details).1.5 ASTM No. 1 Oil, previously used in this test method as a standard test liquid, is no longer commercially available and in 2005 was replaced with IRM 901; refer to Table 1 and Appendix X3 for details.1.6 ASTM No. 5 Oil was accepted into Specification D5900 as an industry reference material in 2010 and designated as IRM 905. The composition, and properties of this immersion oil were not changed and the data in Table 1 remains current. Refer to Appendix X4 for other details.1.7 The specifications and properties listed in Table 1 for IRM 901, IRM 902, IRM 903, and IRM 905 are also maintained in Specification D5900.1.7.1 The subcommittee responsible for maintaining Test Method D471, presently D11.15, shall review the data in Specification D5900 to ensure that it is identical to that which appears in Test Method D471. This shall be accomplished at the time of the 5 year review or more frequently when necessary.1.8 Historical, technical, and background information regarding the conversion from ASTM No. 1, ASTM No. 2, and ASTM No. 3 Oils to IRM 901, IRM 902, and IRM 903 immersion oils is maintained in Practice D5964.1.8.1 The subcommittee responsible for maintaining Test Method D471, presently D11.15, shall review the data in Practice D5964 to ensure that it is identical to that which appears in Test Method D471. This shall be accomplished at the time of the 5 year review or more frequently when necessary.1.9 This test method includes the following:Change in Mass (after immersion) Section 11Change in Volume (after immersion) Section 12Dimensional-Change Method for Water-Insoluble Liq- uids and Mixed Liquids  Section 13Change in Mass with Liquid on One Surface Only Section 14Determining Mass of Soluble Matter Extracted by the  Liquid  Section 15Change in Tensile Strength, Elongation and Hardness (after immersion)  Section 16Change in Breaking Resistance, Burst Strength, Tear  Strength and Adhesion for Coated Fabrics  Section 17Calculation (of test results) Section 181.10 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method identifies the changes in hydraulic conductivity as a result of freeze-thaw on natural soils only.4.2 It is the user's responsibility when using this test method to determine the appropriate water content of the laboratory-compacted specimens (that is, dry, wet, or at optimum water content) (Note 2).NOTE 2: It is common practice to construct clay liners and covers at optimum or greater than optimum water content. Specimens compacted dry of optimum water content typically do not contain larger pore sizes as a result of freeze-thaw because the effects of freeze-thaw are minimized by the lack of water in the sample. Therefore, the effect of freeze-thaw on the hydraulic conductivity is minimal, or the hydraulic conductivity may increase slightly.34.3 The requestor must provide information regarding the effective stresses to be applied during testing, especially for determining the final hydraulic conductivity. Using high effective stresses (that is, 35 kPa [5 psi] as allowed by Test Method D5084) can decrease an already increased hydraulic conductivity resulting in lower final hydraulic conductivity values. The long-term effect of freeze-thaw on the hydraulic conductivity of compacted soils is unknown. The increased hydraulic conductivity caused by freeze-thaw may be temporary. For example, the overburden pressure imparted by the waste placed on a soil liner in a landfill after being subjected to freeze-thaw may reduce the size of the cracks and pores that cause the increase in hydraulic conductivity. It is not known if the pressure would overcome the macroscopically increased hydraulic conductivity sufficiently to return the soil to its original hydraulic conductivity (prior to freeze-thaw). For cases such as landfill covers, where the overburden pressure is low, the increase in hydraulic conductivity due to freeze-thaw will likely be permanent. Thus, the requestor must take the application of the test method into account when establishing the effective stress.4.4 The specimen(s) shall be frozen to −15°C [5°F] unless the requestor specifically dictates otherwise. It has been documented by Othman, et al3 that the initial (that is, 0 to −15°C [32°F to 5°F]) freezing condition causes the most significant effects in hydraulic conductivity. Freezing rate and ultimate temperature should mimic the field conditions. It has been shown that superfreezing (that is, freezing the specimen at very cold temperatures and very short time periods) produces erroneous results.4.5 The thawed specimen temperature and thaw rate shall mimic field conditions. Thawing specimens in an oven (that is, overheating) will produce erroneous results.4.6 According to Othman, et al3 the effects of freeze-thaw usually occur by Cycle 10, thus it is recommended that at least 10 freeze-thaw cycles shall be performed to ensure that the full effects of freeze-thaw are measured. If the hydraulic conductivity values are still increasing after 10 freeze-thaw cycles, the test method shall be continued (that is, more freeze-thaw cycles shall be performed).NOTE 3: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These test methods cover laboratory measurement of the effect of freeze-thaw on the hydraulic conductivity of compacted or intact soil specimens using Test Method D5084 and a flexible wall permeameter to determine hydraulic conductivity. These test methods do not provide steps to perform sampling of, or testing of, in situ soils that have already been subjected to freeze-thaw conditions. Test Method A uses a specimen for each hydraulic conductivity determination that is subjected to freeze/thaw while Test Method B uses one specimen for the entire test method (that is, the same specimen is used for each hydraulic conductivity).1.2 These test methods may be used with intact specimens (block or thin-walled) or laboratory compacted specimens and shall be used for soils that have an initial hydraulic conductivity less than or equal to 1E-5 m/s [3.94 E-4 in./s] (1E-3 cm/s) (Note 1).NOTE 1: The maximum initial hydraulic conductivity is given as 1 E-5 m/s [3.94 E-4 in./s]. This should also apply to the final hydraulic conductivity. It is expected that if the initial hydraulic conductivity is 1 E-5 m/s (3.94 E-4 in./s), then the final hydraulic conductivity will not change (increase) significantly (that is, greater than 1 E-5 m/s) (3.94 E-4 in./s).1.3 Soil specimens tested using this test method can be subjected to three-dimensional freeze-thaw (herein referred to as 3-d) or one-dimensional freeze-thaw (herein referred to as 1-d). (For a discussion of one-dimensional freezing versus three-dimensional freezing, refer to Zimmie and LaPlante or Othman, et al.2, 3)1.4 Soil specimens tested using this test method can be tested in a closed system (that is, no access to an external supply of water during freezing) or an open system.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.5.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of the test methods ro consider significant digits used in analysis methods for engineering data.1.6 Units—The values stated in SI units or inch-pound units (presented in brackets) are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Rubber articles, such as seals, gaskets, and membranes, may be exposed in service to chlorine compounds used in potable water as disinfectants. The exposure may be intermittent or continuous and can occur at various temperatures.5.2 Properties of rubber articles can deteriorate as a result of exposure to water containing these chlorine compounds, affecting their performance for the intended use.5.3 This test method attempts to simulate service conditions through controlled accelerated testing, but may not give a direct correlation with part performance under actual service conditions. It yields comparative data on which to base judgement on expected service quality.5.4 This test method is suitable for compliance testing, quality control, and research and development work.1.1 This test method covers procedures for evaluating the ability of rubber and rubber-like materials to withstand the effects of aqueous solutions with available chlorine and chloramine. It is intended to compare the effects of chlorine compounds, present in potable water due to disinfection procedures, on rubber articles.1.2 Test solutions are designed to contain chlorine compounds, including hypochlorous acid (HOCl), hypochlorite ions (OCl), and monochloramine (NH2Cl).1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method relates efficiency of operation of domestic heating equipment to clean burning. Reducing combustion air in a burner gives more efficient operation. The extent to which combustion air can be reduced is limited by the onset of unacceptable smoke production. By delineating the relation between smoke density and air supply, this test method (together with net stack temperature data) defines the maximum efficiency for a given installation at any acceptable smoke level.5.2 For certain types of equipment, such as the rotary wall-flame burner, too much excess air will cause smoke as well as too little. For these cases, the point of minimum excess air at the acceptable smoke level indicates the optimum efficiency.5.3 The operating temperatures of the equipment will affect these test results. The relation of excess air to smoke density is thus susceptible to some change at different points in an operating cycle. In practice, an adequate compromise is possible by operating the burner for 15 min before any readings are recorded and then obtaining the test data within a succeeding 25 min period.5.4 Under laboratory conditions, CO2 readings are reproducible to ±0.3 % and smoke readings are reproducible to ±1/2 smoke spot number.1.1 This test method covers the evaluation of the performance of distillate fuels from the standpoint of clean, efficient burning. It is intended primarily for use with home heating equipment burning No. 1 or No. 2 fuel oils. It can be used either in the laboratory or in the field to compare fuels using a given heating unit or to compare the performance of heating units using a given fuel.NOTE 1: This test method applies only to pressure atomizing and rotary-type burners.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.2.1 Arbitrary and relative units are also used.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Resistance to various liquids used in the home is an important characteristic of organic finishes. These test methods provide the means by which the relative performance of coating systems may be evaluated. It should be recognized that continuous films are necessary for reliable results.1.1 This test method covers determination of the effect of household chemicals on clear and pigmented organic finishes, resulting in any objectionable alteration in the surface, such as discoloration, change in gloss, blistering, softening, swelling, loss of adhesion, or special phenomena.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
42 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页