微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

AbstractThese test methods cover determination of the total normal emittance of surfaces by means of portable, inspection-meter instruments. At least two different types of instruments are commercially available for performing this measurement. Test Method A uses an instrument which measures radiant energy reflected from the specimen and Test Method B utilizes an instrument which measures radiant energy emitted from the specimen. Both test methods are limited in accuracy by the degree to which the emittance properties of calibrating standards are known and by the angular emittance characteristics of the surfaces being measure. Test Method A is normally subject to a small error caused by the difference in wavelength distributions between the radiant energy emitted by the two cavities at different temperatures, and that emitted by a blackbody at the specimen temperature. Test Method B also has nongray errors since the detector is not at absolute zero temperature. Test Method A is subject to small errors that may be introduced if the orientation of the sensing component is changed between calibration and specimen measurements. This type of error results from minor changes in alignment of the optical system. Test Method A is subject to error when curved specular surfaces of less than about a certain radius are measured. These errors can be minimized by using calibrating standards that have the same radius of curvature as the test surface. Test Method A can measure reflectance on specimens that are either opaque or semi-transparent in the wavelength region of interest. However, if emittance is to be derived from the reflectance data on a semi-transparent specimen, a correction must be made for transmittance losses. Test Method B is subject to several possible significant errors. These may be due to variation of the test surface temperature during measurements, differences in temperature between the calibrating standards and the test surfaces, changes in orientation of the sensing component between calibration and measurement, errors due to irradiation of the specimen with thermal radiation by the sensing component, and errors due to specimen curvature. Test Method B is limited to emittance measurements on specimens that are opaque to infrared radiation in the wavelength region of interest. 1.1 These test methods cover determination of the total normal emittance (Note 1) of surfaces by means of portable, as well as desktop, inspection-meter instruments. Note 1: Total normal emittance (εN) is defined as the ratio of the normal radiance of a specimen to that of a blackbody radiator at the same temperature. The equation relating εN to wavelength and spectral normal emittance [εN(λ)] is where: L b(λ, T)   =   Planck's blackbody radiation function = c1λ−5(ec2/λT − 1)−1, c1   =   3.7415 × 10−16W·m 2, c2   =   1.4388 × 10−2 m·K, T   =   absolute temperature, K, λ   =   wavelength, m,   =   σT4, and σ   =   Stefan-Boltzmann constant = 5.66961 × 10 −8 W·m−2·K−4 1.2 These test methods are intended for measurements on large surfaces, or small samples, or both, when rapid measurements must be made and where a nondestructive test is desired. They are particularly useful for production control tests. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

AbstractThe normal butane thermophysical property tables are for use in the calculation of the pressure-volume-temperature (PVT), thermodynamic, and transport properties of normal butane for process design and operations. The preparation of the tables and supporting work was done by the National Institute of Standards and Technology (NIST) under the sponsorship of the Gas Research Institute, the American Gas Association, and the Standard Reference Data Program of NIST. These thermophysical property tables are: thermophysical properties of coexisting gaseous and liquid normal butane and thermophysical properties of normal butane.1.1 The thermophysical property tables for normal butane are for use in the calculation of the pressure-volume-temperature (PVT), thermodynamic, and transport properties of normal butane for process design and operations. Two tables provide properties at the conditions of liquid-vapor equilibrium (saturation properties), one for liquid and one for vapor, at temperatures between 135 K and the critical point, 425.13 K. A third table provides properties at selected T, p points for the equilibrium phase at temperatures between 140 K and 570 K at pressures to 20 MPa. The tables were developed using the National Institute of Standards and Technology Standard Reference Database product REFPROP, version 10.0.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 This test method provides an analysis in weight percent of the normal-propyl bromide concentration of virgin, formulated, or reclaimed normal-propyl bromide: compounds that co-elute with normal-propyl bromide or normal-heptane (internal standard) may interfere with this test method.1.1 This test method provides a basis for the determination of the normal-propyl bromide (weight %) in the presence of stabilizers and impurities, in virgin or reclaimed normal-propyl bromide (nPB). The application range is from 50 wt % to 100 wt %.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The significant features are typified by a discussion of the limitations of the technique. With the description and arrangement given in the following portions of this test method, the instrument will record directly the normal spectral emittance of a specimen. However, the following conditions must be met within acceptable tolerance, or corrections must be made for the specified conditions.5.1.1 The effective temperatures of the specimen and blackbody must be within 1 K of each other. Practical limitations arise, however, because the temperature uniformities are often not better than a few kelvins.5.1.2 The optical path length in the two beams must be equal, or, preferably, the instrument should operate in a nonabsorbing atmosphere, in order to eliminate the effects of differential atmospheric absorption in the two beams. Measurements in air are in many cases important, and will not necessarily give the same results as in a vacuum, thus the equality of the optical paths for dual-beam instruments becomes very critical.NOTE 4: Very careful optical alignment of the spectrophotometer is required to minimize differences in absorptance along the two paths of the instrument, and careful adjustment of the chopper timing to reduce “cross-talk” (the overlap of the reference and sample signals) as well as precautions to reduce stray radiation in the spectrophotometer are required to keep the zero line flat. With the best adjustment, the “100 % line” will be flat to within 3 %.5.1.3 Front-surface mirror optics must be used throughout, except for the prism in prism monochromators, and it should be emphasized that equivalent optical elements must be used in the two beams in order to reduce and balance attenuation of the beams by absorption in the optical elements. It is recommended that optical surfaces be free of SiO2 and SiO coatings: MgF2 may be used to stabilize mirror surfaces for extended periods of time. The optical characteristics of these coatings are critical, but can be relaxed if all optical paths are fixed during measurements or the incident angles are not changed between modes of operation (during 0 % line, 100 % line, and sample measurements). It is recommended that all optical elements be adequately filled with energy.5.1.4 The source and field apertures of the two beams must be equal in order to ensure that radiant flux in the two beams compared by the apparatus will pertain to equal areas of the sources and equal solid angles of emission. In some cases it may be desirable to define the solid angle of the source and sample when comparing alternative measurement techniques.5.1.5 The response of the detector-amplifier system must vary linearly with the incident radiant flux, or must be calibrated for linearity, and corrections made for observed deviations from linearity.1.1 This test method describes an accurate technique for measuring the normal spectral emittance of electrically nonconducting materials in the temperature range from 1000 to 1800 K, and at wavelengths from 1 to 35 μm. It is particularly suitable for measuring the normal spectral emittance of materials such as ceramic oxides, which have relatively low thermal conductivity and are translucent to appreciable depths (several millimetres) below the surface, but which become essentially opaque at thicknesses of 10 mm or less.1.2 This test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is particularly suitable for research laboratories, where the highest precision and accuracy are desired, and is not recommended for routine production or acceptance testing. Because of its high accuracy, this test method may be used as a reference method to be applied to production and acceptance testing in case of dispute.1.3 This test method requires the use of a specific specimen size and configuration, and a specific heating and viewing technique. The design details of the critical specimen furnace are presented in Ref (1),2 and the use of a furnace of this design is necessary to comply with this test method. The transfer optics and spectrophotometer are discussed in general terms.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The presence of 4-CBA and p-TOL in PTA used for the production of polyester is undesirable because they can slow down the polymerization process; and 4-CBA is also imparting coloration to the polymer due to thermal instability.5.2 Determining the amount of 4-CBA and p-TOL remaining from the manufacture of PTA is often required. This test method is suitable for setting specifications and for use as an internal quality control where these products are produced or used.5.3 This test method is intended as an alternative to the HPLC method for determination of 4-CBA and p-TOL in PTA. The major benefits of CE are speed, simplicity, reduced reagent consumption and operating costs.1.1 This test method covers the determination of 4-carboxybenzaldehyde (4-CBA) and p-toluic acid (p-TOL) in purified terephthalic acid (PTA) by capillary electrophoresis (CE) with normal voltage mode and UV detection. It is applicable for 4-CBA from 5 to 400 mg/kg and for p-TOL from 10 to 400 mg/kg, respectively.1.2 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides procedures for obtaining tristimulus values, luminance factors and chromaticity coordinates of fluorescent-retroreflective materials by bispectral colorimetry using a 45:0 or 0:45 optical measuring system.5.2 The CIE 1931 (2°) standard observer is used to calculate the colorimetric properties of fluorescent-retroreflective sheeting and markings used in daytime high visibility traffic control and personal safety applications because in practice these materials are primarily viewed from a distance where they subtend less than 4° of the visual field.5.3 This test method is applicable to object-color specimens of any gloss level.5.4 Due to the retroreflective properties of these materials the colorimetric data may not be suitable for use in computer colorant formulation.5.5 This test method is suitable for quality control testing of fluorescent-retroreflective sheeting and marking materials.NOTE 1: Separation of the fluorescence and reflectance components from the total colorimetric properties provides useful and meaningful information to evaluate independently the luminescent and diffuse reflective efficiency and consistency of these materials.5.6 This test method is the referee method for determining the conformance of fluorescent-retroreflective sheeting and marking materials to standard daytime colorimetric specifications.1.1 This test method describes the instrumental measurement of the colorimetric properties (CIE tristimulus values, luminance factors, and chromaticity coordinates) of fluorescent-retroreflective sheeting and marking materials when illuminated by daylight.1.2 This test method is generally applicable to any sheeting or marking material having combined fluorescent and retroreflective properties used for daytime high visibility traffic control and personal safety applications.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 There are several purposes of this test:5.1.1 For transmission loss: (a) to characterize the sound insulation characteristics of materials in a less expensive and less time consuming approach than Test Method E90 and ISO 140-3 (“reverberant room methods”), (b) to allow small samples tested when larger samples are impossible to construct or to transport, (c) to allow a rapid technique that does not require an experienced professional to run.5.1.2 For transfer matrix: (a) to determine additional acoustic properties of the material; (b) to allow calculation of acoustic properties of built-up or composite materials by the combination of their individual transfer matrices.5.2 There are significant differences between this method and that of the more traditional reverberant room method. Specifically, in this approach the sound impinges on the specimen in a perpendicular direction (“normal incidence”) only, compared to the random incidence of traditional methods. Additionally, revereration room methods specify certain minimum sizes for test specimens which may not be practical for all materials. At present the correlation, if any, between the two methods is not known. Even though this method may not replicate the reverberant room methods for measuring the transmission loss of materials, it can provide comparison data for small specimens, something that cannot be done in the reverberant room method. Normal incidence transmission loss may also be useful in certain situations where the material is placed within a small acoustical cavity close to a sound source, for example, a closely-fitted machine enclosure or portable electronic device.5.3 Transmission loss is not only a property of a material, but is also strongly dependent on boundary conditions inherent in the method and details of the way the material is mounted. This must be considered in the interpretation of the results obtained by this test method.5.4 The quantities are measured as a function of frequency with a resolution determined by the sampling rate, transform size, and other parameters of a digital frequency analysis system. The usable frequency range depends on the diameter of the tube and the spacing between the microphone positions. An extended frequency range may be obtained by using tubes with various diameters and microphone spacings.5.5 The application of materials into acoustical system elements will probably not be similar to this test method and therefore results obtained by this method may not correlate with performance in-situ.1.1 This test method covers the use of a tube, four microphones, and a digital frequency analysis system for the measurement of normal incident transmission loss and other important acoustic properties of materials by determination of the acoustic transfer matrix.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 These tables cover an air mass 1.5 solar spectral irradiance distribution for use in all terrestrial applications in which a standard reference spectral irradiance is required for the direct component of solar irradiance and hemispherical solar irradiance, consisting of both the diffuse and direct components, that is incident on a sun-facing, 37° tilted surface.An air mass of 1.5, a turbidity of 0.27, and a tilt of 37° (for the hemispherical spectral irradiance tables) were chosen for this standard because they are representative of average conditions in the 48 contiguous states of the United States. In real life, a large range of atmospheric conditions can be encountered, resulting in more or less important variations in atmospheric extinction. Thus, considerable departure from the present reference spectra might be observed depending on time of the day, geographical location, and other fluctuating conditions in the atmosphere.1.3 These tables are an editorial revision of Tables E891 and Tables E892, that have been combined. This action has been taken to make the reference solar spectral energy standards harmonious with ISO 9845-1:1992, that was itself based wholly on Tables E891 and Tables E892 with respect to the tables of spectral irradiance values. The tables contained here are identical to those contained in Tables E891 and E892.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers industry standards which have been determined by consensus to demonstrate compliance to the requirements (”the Rules”) for Level 1, 2, 3, 4 Normal Category Aeroplanes. It includes only standards that are considered mature enough for general application to certification projects and have been found acceptable by committee consensus to propose to the civil aviation authorities (CAAs) for acceptance as a Means of Compliance to their Rules. CAAs may accept a specific revision of this specification as an acceptable Means of Compliance (MoC) to their requirements. The applicant must seek individual guidance from their respective CAA concerning the use of this specification and any referenced Specifications, Practices, Test Methods, or Guides to show compliance to the CAA rules. Alternatively, an applicant may propose a MoC other than those included in this specification, but it is their responsibility to obtain acceptance of their proposed MoC from their CAA.This specification covers requirements for flight (e.g., weight/mass and center of gravity, stall speed, takeoff performance, landing); structures (structural design envelope, structural design loads, flight load conditions, aeroelasticity, special factors of safety, emergency conditions); design and construction (flight control systems, landing gear systems, buoyancy for seaplanes and amphibians, occupant physical environment, fire protection); powerplant (powerplant installation, powerplant installation hazard assessment, powerplant installation ice protection, powerplant installation fire protection); equipment (systems and equipment function and safety, external and cockpit lighting, flight in icing conditions); and flight crew interface and other information (flightcrew compartment interface, instrument markings, airplane flight manual, continued airworthiness).1.1 Applicability: 1.1.1 This specification identifies the industry standards that have been determined by consensus to demonstrate compliance to the requirements (“the Rules”) for Normal Category Aeroplanes.1.1.2 Only standards that are considered mature enough for general application to certification projects and have been found acceptable by committee consensus to propose to the CAAs for acceptance as a Means of Compliance to their Rules are included.1.1.3 In the event that a particular CAA’s requirements are not harmonized with the other CAA’s requirements, the standards will be written to include the non-harmonized requirements as well as the harmonized requirements with the applicability defined in the standard.1.1.4 In addition to identifying the standards that have been approved by the F44 Committee, the structure of this specification follows the structure of the existing performance/objective-based rules for Normal Category aeroplanes as closely as practical. However, due to differences employed by the authorities in structuring the rules, some sections of this specification may parallel the structure of a particular authority’s rules, but not all. The intent was to structure this specification in such a way that the users could identify what standards would be applicable to specific rules with the specifications at the highest level and practices and test methods being at the next level down. Guides that support a specification or practice will be at the next level down from what they support.1.2 Civil Aviation Authorities: 1.2.1 CAAs may accept a specific revision of this specification as an acceptable Means of Compliance (MoC) to their requirements. Acceptance and applicability as a MoC to the CAA’s airworthiness rules remains the decision of the respective CAAs. CAAs may accept this specification, with or without limitations as defined in their specification acceptance document. For information on which CAAs have accepted these standards (in whole or in part) as an acceptable MoC to their Rules, refer to the ASTM F44 webpage (www.astm.org/COMMITTEE/F44.htm) which includes CAA website links.1.3 Applicant Responsibility: 1.3.1 The applicant must seek individual guidance from their respective CAA concerning the use of this specification and any referenced Specifications, Practices, Test Methods, or Guides to show compliance to the CAA rules. Alternatively, an applicant may propose a MoC other than those included in this specification but it is their responsibility to obtain acceptance of their proposed MoC from their CAA.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers solvents based on stabilized normal-propyl bromide (nPB) for use in vapor degreasing. The standard also includes a separate specification for technicalgraden-propyl bromide. Blends and azeotropic mixtures of stabilized nPB for vapor-degreasing shall be blended from nPB meeting the specification for technical-grade nPB. Vapor-degreasing solvents based on stabilized normalpropyl bromide shall conform to the requirements of different properties such as boiling point, acidity, water content, appearance, color, free halogen, nonvolatile residue, acid acceptance, and aluminum corrosion at reflux. Blends and azeotropic mixtures of stabilized nPB with other materials for use in vapor degreasing shall be prepared from technical-grade nPB which shall conform also to requirements of different properties such as: specific gravity, boiling point, acidity, water content, appearance, color, free halogen, nonvolatile residue, normal-propyl bromide content, and iso-propyl bromide content.1.1 This standard covers solvents based on stabilized normal-propyl bromide (nPB) for use in vapor degreasing. The standard also includes a separate specification for technical-grade n-propyl bromide.1.2 Blends and azeotropic mixtures of stabilized nPB for vapor-degreasing shall be blended from nPB meeting the specification for technical-grade nPB.NOTE 1: Guide D3844, Practice D4276, and MNL22 provide additional important information on vapor degreasing and solvent properties.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Determination of shear strength of a rock specimen is an important aspect in the design of structures such as rock slopes, dam foundations, tunnels, shafts, waste repositories, caverns for storage, and other purposes. Pervasive discontinuities (joints, bedding planes, shear zones, fault zones, schistosity) in a rock mass, and genesis, crystallography, texture, fabric, and other factors can cause the rock mass to behave as an anisotropic and heterogeneous discontinuum. Therefore, the precise prediction of rock mass behavior is difficult.5.2 For nonplanar joints or discontinuities, shear strength is derived from a combination base material friction and overriding of asperities (dilatancy), shearing or breaking of the asperities, and rotations at or wedging of the asperities. Sliding on and shearing of the asperities can occur simultaneously. When the normal force is not sufficient to restrain dilation, the shear mechanism consists of the overriding of the asperities. When the normal load is large enough to completely restrain dilation, the shear mechanism consists of the shearing off of the asperities.5.3 Using this test method to determine the shear strength of an intact specimen may generate overturning moments which could result in an inclined shear break.5.4 Shear strength is influenced by the overburden or normal pressure; therefore, the larger the overburden pressure, the larger the shear strength.5.5 In some cases, it may be desirable to conduct tests in situ rather than in the laboratory to determine the representative shear strength of the rock mass, particularly when design is controlled by discontinuities filled with very weak material. In situ direct shear testing limits the inherent scale effects found in rock mechanics problems where the laboratory scale may not be representative of the field scale.5.6 The results can be highly influenced by how the specimen is treated from the time it is obtained until the time it is tested. Therefore, it may be necessary to handle specimens in accordance with Practice D5079 and to document moisture conditions in some manner in the data collection.NOTE 3: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors, Practice D3740 provides a means of evaluating some of those factors.1.1 This test method establishes requirements and laboratory procedures for performing direct shear strength tests on rock specimens under a constant normal load. It includes procedures for both intact rock strength and sliding friction tests, which can be performed on specimens that are homogeneous, or have planes of weakness, including natural or artificial discontinuities. Examples of an artificial discontinuity include a rock-concrete interface or a lift line from a concrete pour. Discontinuities may be open, partially or completely healed or filled (that is, clay fillings and gouge). Only one discontinuity per specimen can be tested. The test is usually conducted in the undrained state with an applied constant normal load. However, a clean, open discontinuity may be free draining, and, therefore, a test on a clean, open discontinuity could be considered a drained test. During the test, shear strength is determined at various applied stresses normal to the sheared plane and at various shear displacements. Relationships derived from the test data include shear strength versus normal stress and shear stress versus shear displacement (shear stiffness).NOTE 1: The term “normal force” is used in the title instead of normal stress because of the indefinable area of contact and the minimal relative displacement between upper and lower halves of the specimen during testing. The actual contact areas during testing change, but the actual total contact surface is unmeasurable. Therefore nominal area is used for loading purposes and calculations.NOTE 2: Since this test method makes no provision for the measurement of pore pressures, the strength values determined are expressed in terms of total stress, uncorrected for pore pressure.1.2 This standard applies to hard rock, medium rock, soft rock, and concrete.1.3 This test method is only applicable to quasi-static testing of rock or concrete specimens under monotonic shearing with a constant normal load boundary condition. The constant normal load boundary condition is appropriate for problems where the normal stress is constant along the discontinuity. The constant normal load boundary condition may not be appropriate for problems where shearing is dilatancy controlled and the normal stress is not constant along the discontinuity.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering design1.5 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units, which are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Absorptance, reflectance, and transmittance of solar energy are important factors in material degradation studies, solar thermal system performance, solar photovoltaic system performance, biological studies, and solar simulation activities. These optical properties are normally functions of wavelength, which require the spectral distribution of the solar flux be known before the solar-weighted property can be calculated. To compare the relative performance of competitive products, or to compare the performance of products before and after being subjected to weathering or other exposure conditions, a reference standard solar spectral distribution is desirable.4.2 These tables provide appropriate standard spectral irradiance distributions for determining the relative optical performance of materials, solar thermal, solar photovoltaic, and other systems. The tables may be used to evaluate components and materials for the purpose of solar simulation where either the direct or the hemispherical (that is, direct beam plus diffuse sky) spectral solar irradiance is desired. However, these tables are not intended to be used as a benchmark for ultraviolet radiation used in indoor exposure testing of materials using manufactured light sources.4.3 The total integrated irradiances for the direct and hemispherical tilted spectra are 896.99 W·m-2 and 1001.92 W·m-2, respectively. Note that, in PV applications, an amplitude adjustment of only –0.2 % would be required to match standard reporting condition irradiances of 1000 W·m-2 for hemispherical irradiance.4.4 Previously defined global hemispherical reference spectrum (G159) for a sun-facing 37°-tilted surface served well to meet the needs of the flat-plate photovoltaic research, development, and industrial community. Investigation of prevailing conditions and measured spectra shows that this global hemispherical reference spectrum can be attained in practice under a variety of conditions, and that these conditions can be interpreted as representative for many combinations of atmospheric parameters. Earlier global hemispherical reference spectrum may be closely, but not exactly, reproduced with improved spectral wavelength range, uniform spectral interval, and spectral resolution equivalent to the spectral interval, using inputs in X1.4.4.5 Reference spectra generated by the SMARTS Version 2.9.9 model for the indicated conditions are shown in Fig. 1. The exact input file structure required to generate the reference spectra is shown in Table 1.4.6 Differences from the previous standard spectra (G159) can be summarized as follows:4.6.1 Extended spectral interval in the ultraviolet (down to 280 nm, rather than 305 nm),4.6.2 Better resolution (2002 wavelengths, as compared to 120),4.6.3 Constant intervals (0.5 nm below 400 nm, 1 nm between 400 nm and 1700 nm, and 5 nm above),4.6.4 Better definition of atmospheric scattering and gaseous absorption, with more species considered,4.6.5 Better defined extraterrestrial spectrum,4.6.6 More realistic spectral ground reflectance,4.6.7 Lower aerosol optical depth, yielding significantly larger direct normal irradiance, and4.6.8 Practical definition of the direct irradiance, with inclusion of the circumsolar irradiance within 2.5° from sun center to match measurements made with current pyrheliometers (7).1.1 These tables contain terrestrial solar spectral irradiance distributions for use in terrestrial applications that require a standard reference spectral irradiance for hemispherical solar irradiance (consisting of both direct and diffuse components) incident on a sun-facing, 37° tilted surface or the direct normal spectral irradiance. The data contained in these tables reflect reference spectra with uniform wavelength interval (0.5 nanometer (nm) below 400 nm, 1 nm between 400 nm and 1700 nm, an intermediate wavelength at 1702 nm, and 5 nm intervals from 1705 nm to 4000 nm). The data tables represent reasonable cloudless atmospheric conditions favorable for photovoltaic (PV) energy production, as well as weathering and durability exposure applications.1.2 The 37° slope of the sun-facing tilted surface was chosen to represent the average latitude of the 48 contiguous United States.1.3 The air mass and atmospheric extinction parameters are chosen to provide (1) historical continuity with respect to previous standard spectra, (2) reasonable cloudless atmospheric conditions favorable for photovoltaic (PV) energy production or weathering and durability exposure, based upon modern broadband solar radiation data, atmospheric profiles, and improved knowledge of aerosol optical depth profiles. In nature, an extremely large range of atmospheric conditions can be encountered even under cloudless skies. Considerable departure from the reference spectra may be observed depending on time of day, geographical location, and changing atmospheric conditions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 These tables define an air mass 1.5 solar spectral irradiance distribution for use in all solar applications where a standard terrestrial spectral irradiance is required for the direct normal radiation. A similar standard for global irradiance on a 37° tilted surface is given in Standard E892. 1.2 These tables are modeled data that were generated using a zero air mass solar spectrum based on the revised extraterrestrial spectrum of Neckel and Labs (1), the BRITE (3, 4) Monte Carlo radiative transfer code, and the 1962 U.S. Standard Atmosphere (5) with a rural aerosol (6, 7, 8). Further details are presented in Appendix XI. 1.3 The air mass zero (AM0) spectrum that was used to generate the terrestrial spectrum was provided by C. Frohlich and C. Wehrli (1) and is a revised and extended Neckel and Labs (2) spectrum. Neckel and Labs revised their spectrum by employing newer limb-darkening data to convert from radiance to irradiance, as reported by Frohlich (9), citing the study by Hardrop (10). Comparisons by Frohlich with calibrated sunphotometer data from Mauna Loa, Hawaii, indicate that this new extraterrestrial spectrum is the best currently available. 1.4 The development of the terrestrial solar spectrum data is based on work reported by Bird, Hulstrom, and Lewis (11). In computing the terrestrial values using the BRITE Monte Carlo radiation transfer code, the authors cited took the iterations to 2.4500 [mu]m only. We have extended the spectrum to 4.045 [mu]m using sixteen E[lambda]i values from the original Standard E891-82. Irradiance values in Standard E891-82 were computed from the extraterrestrial spectrum represented by Standard E490. The additional data points were added to account for the solar irradiance in this region that account for approximately 1.5% of the total irradiance between 0.305 and 4.045 [mu]m. The errors propagated by doing so are insignificant. 1.5 An air mass of 1.5 and a turbidity of 0.27 were chosen for this standard because they are representative of average conditions in the 48 contiguous states of the United States.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Each Facility Rating Scale (see Figs. 1-4) in this classification provides a means to estimate the level of serviceability of a building or facility for one topic of serviceability and to compare that level against the level of any other building or facility.4.2 This classification can be used for comparing how well different buildings or facilities meet a particular requirement for serviceability. It is applicable despite differences such as location, structure, mechanical systems, age, and building shape.4.3 This classification can be used to estimate the amount of variance of serviceability from target or from requirement, for a single office facility, or within a group of office facilities.4.4 This classification can be used to estimate the following:4.4.1 Serviceability of an existing facility for uses other than its present use.4.4.2 Serviceability (potential) of a facility that has been planned but not yet built.4.4.3 Serviceability (potential) of a facility for which remodeling has been planned.4.5 Use of this classification does not result in building evaluation or diagnosis. Building evaluation or diagnosis generally requires a special expertise in building engineering or technology and the use of instruments, tools, or measurements.4.6 This classification applies only to facilities that are building constructions, or parts thereof. (While this classification may be useful in rating the serviceability of facilities that are not building constructions, such facilities are outside the scope of this classification.)4.7 This classification is not intended for, and is not suitable for, use for regulatory purposes, nor for fire hazard assessment nor for fire risk assessment.1.1 This classification covers pairs of scales for classifying an aspect of the serviceability of an office facility, that is, the capability of an office facility to meet certain possible requirements to be able to do normal office tasks outside scheduled hours.1.2 Within that aspect of serviceability, each pair of scales, shown in Figs. 1-4, are for classifying one topic of serviceability. Each paragraph in an Occupant Requirement Scale (see Figs. 1-4) summarizes one level of serviceability on that topic, which occupants might require. The matching entry in the Facility Rating Scale (see Figs. 1-4) is a translation of the requirement into a description of certain features of a facility which, taken in combination, indicate that the facility is likely to meet that level of required serviceability.FIG. 1 Scale A.10.1 for Operation Outside Normal HoursFIG. 1 Scale A.10.1 for Operation Outside Normal Hours (continued)FIG. 2 Scale A.10.2 for Support After HoursFIG. 2 Scale A.10.2 for Support After Hours (continued)FIG. 3 Scale A.10.3 for Temporary Loss of External ServicesFIG. 3 Scale A.10.3 for Temporary Loss of External Services (continued)FIG. 4 Scale A.10.4 for Continuity of Work (During Breakdowns)FIG. 4 Scale A.10.4 for Continuity of Work (During Breakdowns) (continued)1.3 The entries in the Facility Rating Scale (see Figs. 1-4) are indicative and not comprehensive. They are for quick scanning to estimate approximately, quickly, and economically, how well an office facility is likely to meet the needs of one or another type of occupant group over time. The entries are not for measuring, knowing, or evaluating how an office facility is performing.1.4 This classification can be used to estimate the level of serviceability of an existing facility. It can also be used to estimate the serviceability of a facility that has been planned but not yet built, such as one for which single-line drawings and outline specifications have been prepared.1.5 This classification indicates what would cause a facility to be rated at a certain level of serviceability, but does not state how to conduct a serviceability rating nor how to assign a serviceability score. That information is found in Practice E1334. The scales in this classification are complimentary to and compatible with Practice E1334. Each requires the other.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is intended to be used to determine the amount of water required to prepare hydraulic cement pastes with normal consistency, as required for certain standard tests.1.1 This test method covers the determination of the normal consistency of hydraulic cement.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See 1.4 for a specific warning statement.1.4 Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.21.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
16 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页