微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites (CFCCs) are generally characterized by fine-grain sized (<50 μm) matrices and ceramic fiber reinforcements. In addition, continuous fiber-reinforced glass (amorphous) matrix composites can also be classified as CFCCs. Uniaxially loaded compressive strength tests provide information on mechanical behavior and strength for a uniformly stressed CFCC.4.3 Generally, ceramic and ceramic matrix composites have greater resistance to compressive forces than tensile forces. Ideally, ceramics should be compressively stressed in use, although engineering applications may frequently introduce tensile stresses in the component. Nonetheless, compressive behavior is an important aspect of mechanical properties and performance. The compressive strength of ceramic and ceramic composites may not be deterministic. Therefore, test a sufficient number of test specimens to gain an insight into strength distributions.4.4 Compression tests provide information on the strength and deformation of materials under uniaxial compressive stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior that may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, etc.) that may be influenced by testing mode, testing rate, effects of processing or combination of constituent materials, or environmental influences. Some of these effects may be consequences of stress corrosion or sub-critical (slow) crack growth which can be minimized by testing at sufficiently rapid rates as outlined in this test method.4.5 The results of compression tests of test specimens fabricated to standardized dimensions from a particulate material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size product or its in-service behavior in different environments.4.6 For quality control purposes, results derived from standardized compressive test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.7 The compressive behavior and strength of a CFCC are dependent on, and directly related to, the material. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, are recommended.1.1 This test method covers the determination of compressive strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at ambient temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendixes. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Compressive strength, as used in this test method, refers to the compressive strength obtained under monotonic uniaxial loading, where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D) or other multi-directional reinforcements. In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, 3D, and other multi-directional continuous fiber reinforcements. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites generally characterized by crystalline matrices and ceramic fiber reinforcements are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and elevated-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate strengths of monolithic advanced ceramics, the nonuniform stress distribution of the flexure test specimen, in addition to dissimilar mechanical behavior in tension and compression for CFCCs, leads to ambiguity of interpretation of strength results obtained from flexure tests for CFCCs. Uniaxially loaded tensile strength tests provide information on mechanical behavior and strength for a uniformly stressed material.4.3 Unlike monolithic advanced ceramics that fracture catastrophically from a single dominant flaw, CFCCs generally experience “graceful” (that is, non-catastrophic, ductile-like stress-strain behavior) fracture from a cumulative damage process. Therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially loaded tensile test may not be as significant a factor in determining the ultimate strengths of CFCCs. However, the need to test a statistically significant number of tensile test specimens is not obviated. Therefore, because of the probabilistic nature of the strengths of the brittle fibers and matrices of CFCCs, a sufficient number of test specimens at each testing condition is required for statistical analysis and design. Studies to determine the influence of test specimen volume or surface area on strength distributions for CFCCs have not been completed. It should be noted that tensile strengths obtained using different recommended tensile test specimen geometries with different volumes of material in the gage sections may be different due to these volume differences.4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior that may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, and so forth) that may be influenced by testing mode, testing rate, effects of processing or combinations of constituent materials, environmental influences, or elevated temperatures. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth that can be minimized by testing at sufficiently rapid rates as outlined in this test method.4.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments or various elevated temperatures.4.6 For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for the particular primary processing conditions and post-processing heat treatments.4.7 The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is recommended.1.1 This test method covers the determination of tensile strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendixes. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, temperature control, temperature gradients, and data collection and reporting procedures are addressed. Tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial loading, where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D) or other multi-directional reinforcements. In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, 3D, and other multi-directional continuous fiber reinforcements. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This guide provides a means of using an LD instrument to obtain a droplet size distribution from a spray in gas co-flow that approximates a flux-sensitive sample.45.2 In many sprays, the experimenter shall account for spatial segregation of droplets by size. This guide provides a means of spatial averaging the droplet distribution.5.3 The results obtained will be statistical in nature and refer to the time average of droplet size distribution of the entire spray.5.4 This guide is used to calibrate a spray generation device to produce a desired droplet size distribution under prespecified environmental and co-flow conditions or characterize an unknown spray while minimizing the uncertainty in the measurement.1.1 The purpose of this guide is to define a test procedure for applying the laser diffraction (LD) method to estimate an average droplet size distribution that characterizes the flux of liquid droplets produced by a specified spray generation device under specified gas co-flow conditions using a specified liquid. The intended scope is limited to artificially generated sprays with high speed co-flow. The droplets are assumed to be in the size range of 1 to 2000 µm in diameter and occur in sprays that are contained within a volume as small as a few cubic centimetres or as large as a cubic metre. The droplet sizes are assumed to be distributed non-uniformly within the spray volume.1.2 This guide is intended primarily to guide measurement of performance of nozzles and atomizers using LD instruments.1.3 Non-uniform sprays require measurements across the entire spray cross section or through several chords providing a representative sample of the overall spray cross section. The aim of multiple-chord measurements is to obtain a single droplet size distribution that characterizes the whole spray rather than values from a single chordal measurement.1.4 Use of this guide requires that the instrument does not interfere with spray production and does not significantly impinge upon or disturb the co-flow of gas and the spray. This technique is, therefore, considered non-intrusive.1.5 The computation of droplet size distributions from the light-scattering distributions is done using Mie scattering theory or Fraunhofer diffraction approximation. The use of Mie theory accounts for light refracted through the droplet and there is a specific requirement for knowledge of both real (refractive) and imaginary (absorptive) components of the complex index of refraction. Mie theory also relies on an assumption of droplet homogeneity. The Fraunhofer diffraction approximation does not account for light refracted through the droplet and does not require knowledge of the index of refraction.1.6 The instruments shall include data-processing capabilities to convert the LD scattering intensities into droplet size distribution parameters in accordance with Practice E799 and Test Method E1260.1.7 The spray is visible and accessible to the collimated beam produced by the transmitter optics of the LD instrument. The shape and size of the spray shall be contained within the working distance of the LD system optics as specified by the instrument manufacturer.1.8 The size range of the LD optic should be appropriate to the spray generation device under study. For example, the upper bound of the smallest droplet size class reported by the instrument shall be not more than 1/4 the size of DV0.1.1.9 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.10 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Flexural properties determined by this test method are useful for quality control of glass-fiber reinforced concrete products, ascertaining compliance with the governing specifications, research and development, and generating data for use in product design.1.1 This test method covers determination of the flexural ultimate strength in bending and the yield strength of glass-fiber reinforced concrete sections by the use of a simple beam of 1.0 in. (25.4 mm) or less in depth using third-point loading.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers a procedure for the nondestructive measurement of the thickness of transparent anodic coatings on aluminum articles by means of the light-section microscope. This method may also be used to measure the thickness of any transparent coating on an opaque reflective surface.1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Coating thickness is an important factor in the performance of a coating in service and is usually specified in a coating specification.4.2 This method is suitable for acceptance testing.1.1 This test method covers measurement of the local thickness of metal and oxide coatings by the microscopical examination of cross sections using an optical microscope.1.2 Under good conditions, when using an optical microscope, the method is capable of giving an absolute measuring accuracy of 0.8 μm. Accuracy will determine the suitability of the method for measuring the thickness of thin coatings. Accuracy is dependent upon the setup of the microscope and preparation of the sample; 0.8 μm should not be taken as an absolute and instead as guideline.1.2.1 Optical microscopes may use digital image capture devices and software to evaluate those images.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (This is especially applicable to the chemicals cited in Table X2.1.)1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Determination of the flexural modulus, beam bending strength and full assembly strength, by this test method is especially useful for product validation, design and specification purposes.5.2 Calculated values for flexural modulus, bending strength and full assembly strength will vary with specimen depth, span length, hole configurations, loading rate, and ambient test temperature. A minimum span to depth ratio of 16:1 is required for establishing the flexural modulus, wherein shear deformation effects are neglected.5.3 Validity—Stress at failure, σ, is only valid for crossarm failures due to local compression buckling. Other controlling modes of failure will dictate the ultimate phase loading capacities. For example, in-plane shear, fastener pin bearing, position hardware, center mount failures and fastener pull out will dictate the failure mode and the crossarm capacity.1.1 These test methods cover the determination of the flexural modulus and bending strength of both the tangent and deadend Fiber Reinforced Polymer (FRP) composite crossarms loaded perpendicular to the plane of minor and major axes. One method covers testing of assembled tangent crossarms including the tangent bracket and relative hardware. The other method covers testing of assembled deadend crossarms with a deadend bracket and relative phase loading hardware. The failure modes and associated stresses can be used for predicting the phase load capacities of pultruded crossarms specific to certain conductor loading scenarios exerted by conductors.1.2 The test data described in this standard can be used for predicting the vertical and horizontal component loads of deadend and tangent arms. Both deadend and tangent crossarms shall be tested in the two configurations described in Figures 1 and 2, respectively. This will permit the manufacturers to publish both vertical and horizontal design capacities for deadend crossarm configurations so that two way bending stresses, caused by catenary effects, can be considered when developing the capacity of the deadend crossarms by utility design engineers and manufacturers.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard will not address all factors that affect the phase loading capacity.1.5 This standard does not address the use of core materials that are added to increase the structural capacity of the crossarms. Contribution of core materials shall not be considered within the calculations provided in this standard. Use of core material properties in design computations to identify improvement in design strengths of crossarms is the sole responsibility of the designee in-charge of the project.1.6 Torsional effects occurring during standard in service usage are not considered within this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is useful for the direct measurement of the thicknesses of metallic coatings and of individual layers of composite coatings, particularly for layers thinner than normally measured with the light microscope.4.2 This test method is suitable for acceptance testing.4.3 This test method is for the measurement of the thickness of the coating over a very small area and not of the average or minimum thickness per se.4.4 Accurate measurements by this test method generally require very careful sample preparation, especially at the greater magnifications.4.5 The coating thickness is an important factor in the performance of a coating in service.1.1 This test method covers the measurement of metallic coating thicknesses by examination of a cross section with a scanning electron microsope (SEM).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce compressive property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the compressive response and should therefore be reported include the following: material, methods of material preparation and layup, specimen stacking sequence, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, time at temperature, void content, and volume percent reinforcement. Properties, in the test direction, that may be obtained from this test method include:5.1.1 Ultimate compressive strength,5.1.2 Ultimate compressive strain,5.1.3 Compressive (linear or chord) modulus of elasticity,5.1.4 Poisson's ratio in compression, and5.1.5 Transition strain.1.1 This test method determines the in-plane compressive properties of polymer matrix composite materials reinforced by high-modulus fibers. The composite material forms are limited to continuous-fiber or discontinuous-fiber reinforced composites for which the elastic properties are specially orthotropic with respect to the test direction. This test procedure introduces the compressive force into the specimen through shear at wedge grip interfaces. This type of force transfer differs from the procedure in Test Method D695 where compressive force is transmitted into the specimen by end-loading, Test Method D6641/D6641M where compressive force is transmitted by combined shear and end loading, and Test Method D5467/D5467M where compressive force is transmitted by subjecting a honeycomb core sandwich beam with thin skins to four-point bending.1.2 This test method is applicable to composites made from unidirectional tape, wet-tow placement, textile (for example, fabric), short fibers, or similar product forms. Some product forms may require deviations from the test method.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pounds units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.NOTE 1: Additional procedures for determining compressive properties of resin-matrix composites may be found in Test Methods D695, D5467/D5467M, and D6641/D6641M.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The ENDF/B library in the United States and similar libraries elsewhere, such as JEFF (23), JENDL (21), and BROND (22), provide a compilation of neutron cross section and other nuclear data for use by the nuclear community. The availability of these excellent evaluations makes possible standardized usage, thereby allowing easy referencing and intercomparisons of calculations. However, as the first ENDF/B files were developed it became apparent that they were not adequate for all applications. This need resulted in the development of the specialized ENDF/B Dosimetry File (17, 25), consisting of activation cross sections important for dosimetry applications. This file was made available worldwide. Later, other “Special Purpose” files were introduced (26). In the ENDF/B-VI compilation (27), dosimetry files no longer appeared as separate evaluation files. The ENDF/B-VII.0 compilation (28) removed most of the reaction-specific covariance files used by the dosimetry community. It kept the covariance files for the “standard cross sections” in a special sub-library, but the covariance data in this sub-library are only provided over the energy range in which each reaction is considered to be a “standard”, and does not include the full energy range required for LWR PVS dosimetry applications. Later updates to the ENDF/B releases added covariance files for some reaction channels but these covariance files were often based solely on calculations and were not representative of the methodology used to derive the underlying ENDF/B cross section. In response to the need for a dosimetry-specific library, the International Atomic Energy Agency convened a Coordinated Research Project (CRP) that drew upon the set of international experts to provide a recommended set of dosimetry cross sections and to compile a set of validation evidence that supported the use of this recommended dataset. This file, the International Reactor Dosimetry and Fusion File (IRDFF) (19, 20), draws upon other national nuclear evaluations and supplements these evaluations with a set of reactions evaluated by expert international groups. The IRDFF library was developed to support the LWR dosimetry application as well as other dosimetry applications that go beyond the scope of this standard and, as part of its development process, it incorporates validation data acquired in reference and standard benchmark neutron fields. Some of the IRDFF supplemental reactions represent material evaluations that are currently being examined by the CSEWG for inclusion within updated ENDF/B evaluations. The supplemental IRDFF evaluations only include the specific reactions of interest to the dosimetry community and not a full material evaluation. The ENDF community requires a complete evaluation before including it in the main ENDF/B evaluated library.4.2 The application to LWR surveillance dosimetry introduced new data needs that can best be satisfied by the creation of a dedicated cross section file. This file shall be maintained in a form designed for easy application by users (minimal processing). The file shall continue to incorporate the following types of information or indicate the sources of the following type of data that should be used to supplement the file contents:4.2.1 Dosimetry cross sections for fission, activation, helium production sensor reactions in LWR environments in support of radiometric, solid state track recorder, helium accumulation dosimetry methods (see Test Methods E853, E854, E910, and E1005).4.2.2 Other cross sections or sensor response functions useful for active or passive dosimetry measurements, for example, the use of neutron absorption cross sections to represent attenuation corrections due to covers or self-shielding.4.2.3 Cross sections for damage evaluation, such as displacements per atom (dpa) in iron.4.2.4 Related nuclear data needed for dosimetry, such as branching ratios, fission yields, and atomic abundances.4.3 The ASTM-recommended cross sections and uncertainties are based mostly on the IRDFF (version 1.05) dosimetry files. Damage cross sections for materials such as iron have been added in order to promote standardization of reported dpa measurements within the dosimetry community. Integral measurements from benchmark fields and reactor test regions have been considered in order to ensure self-consistency (29). The total dosimetry file is intended to be as self-consistent as possible with respect to both differential and integral measurements as applied in LWR environments. This self-consistency of the data file is mandatory for LWR-pressure vessel surveillance applications, where only very limited dosimetry data are available. Where modifications to an existing evaluated cross section have been made to obtain this self-consistence in LWR environments, the modifications shall be detailed in the associated documentation (see (19, 29)).1.1 This guide covers the establishment and use of an ASTM evaluated nuclear data cross section and uncertainty file for analysis of single or multiple sensor measurements in neutron fields related to light water reactor LWR-Pressure Vessel Surveillance (PVS). These fields include in- and ex-vessel surveillance positions in operating power reactors, benchmark fields, and reactor test regions.1.2 Requirements for establishment of ASTM-recommended cross section files address data format, evaluation requirements, validation in benchmark fields, evaluation of error estimates (covariance file), and documentation. A further requirement for components of the ASTM-recommended cross section file is their internal consistency when combined with sensor measurements and used to determine a neutron spectrum.1.3 Specifications for use include energy region of applicability, data processing requirements, and application of uncertainties.1.4 This guide is directly related to and should be used primarily in conjunction with Guides E482 and E944, and Practices E560, E185, and E693.1.5 The ASTM cross section and uncertainty file represents a generally available data set for use in sensor set analysis. However, the availability of this data set does not preclude the use of other validated data, either proprietary or nonproprietary. When alternate cross section files that deviate from the requirements laid out in this standard are used, the deviations should be noted to the customer of the dosimetry application.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites generally characterized by fine grain-sized (<50 μm) matrices and ceramic fiber reinforcements are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and high-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate strengths of monolithic advanced ceramics, the nonuniform stress distribution of the flexure specimen in addition to dissimilar mechanical behavior in tension and compression for CFCCs lead to ambiguity of interpretation of strength results obtained from flexure tests for CFCCs. Uniaxially loaded tensile strength tests provide information on mechanical behavior and strength for a uniformly stressed material.4.3 Unlike monolithic advanced ceramics which fracture catastrophically from a single dominant flaw, CFCCs generally experience “graceful” fracture from a cumulative damage process. Therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially loaded tensile test may not be as significant a factor in determining the ultimate strengths of CFCCs. However, the need to test a statistically significant number of tensile test specimens is not obviated. Therefore, because of the probabilistic nature of the strength distributions of the brittle matrices of CFCCs, a sufficient number of test specimens at each testing condition is required for statistical analysis and design. Studies to determine the exact influence of test specimen volume on strength distributions for CFCCs have not been completed. It should be noted that tensile strengths obtained using different recommended tensile specimens with different volumes of material in the gage sections may be different due to these volume differences.4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, etc.) which may be influenced by testing mode, testing rate, processing or alloying effects, or environmental influences. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth that can be minimized by testing at sufficiently rapid rates as outlined in this test method.4.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments.4.6 For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for, given primary processing conditions and post-processing heat treatments.4.7 The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is highly recommended.1.1 This test method covers the determination of tensile behavior including tensile strength and stress-strain response under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at ambient temperature. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendix. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Note that tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial loading where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method applies primarily to all advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D). In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, and 3D continuous fiber reinforcement. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7 and 8.2.5.2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 The presence of large grains has been correlated with anomalous mechanical behavior in, for example, crack initiation, crack propagation, and fatigue. Thus there is engineering justification for reporting the ALA grain size.4.2 These methods shall only be used with the presence of outlier coarse grains, 3 or more ASTM grain size numbers larger than the rest of the microstructure and comprising 5 % or less of the specimen area. A typical example is shown in Annex A1 as Fig. A1.1.4.3 These methods shall not be used for the determination of average grain size, which is treated in Test Methods E112. Examples of microstructures that do not qualify for ALA treatment are shown in Annex A1 as Fig. A1.2, Fig. A1.3, and Fig. A1.4.4.4 These methods may be applied in the characterization of duplex grain sizes, as instructed in the procedures for Test Methods E1181.1.1 These test methods describe simple manual procedures for measuring the size of the largest grain cross-section observed on a metallographically prepared plane section.1.2 These test methods shall only be valid for microstructures containing outlier coarse grains, where their population is too sparse for grain size determination by Test Methods E112.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Determination of flexural modulus by this test method is especially useful for quality control and specification purposes.5.2 Experimental values for flexural modulus will vary with specimen depth, span length, loading rate, ambient test temperature, and other atmospheric conditions.5.3 Before proceeding with this test method, reference should be made to the specification of the material being tested, including constituent materials of the specimen. Any test specimen preparation, environmental or loading conditioning, dimensions, or testing parameters covered in the material specification, or both, shall take precedence over those mentioned in this test method. If there are no material specifications, then these default conditions apply. Table 1 in Classification D4000 lists the ASTM materials standards that currently exist.1.1 This test method covers the determination of Flexural Modulus of pultruded open and closed fiber reinforced polymer (FRP) composites of doubly symmetrical cross sections (sections having geometric symmetry about both the major and minor axes) about their geometric centroid subjected to flexure and shear. This test method utilizes a three-point loading system applied to a simply supported beam.1.2 The values stated in SI units are to be regarded as the standard. The values provided in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: The is no known ISO equivalent to this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
13 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页