微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Accurate elemental analyses of samples of petroleum and petroleum products are required for the determination of chemical properties, which are in turn used to establish compliance with commercial and regulatory specifications.1.1 This practice covers information relating to sampling, calibration and validation of X-ray fluorescence instruments for elemental analysis, including all kinds of wavelength dispersive (WDXRF) and energy dispersive (EDXRF) techniques. This practice includes sampling issues such as the selection of storage vessels, transportation, and sub-sampling. Treatment, assembly, and handling of technique-specific sample holders and cups are also included. Technique-specific requirements during analytical measurement and validation of measurement for the determination of trace elements in samples of petroleum and petroleum products are described. For sample mixing, refer to Practice D5854. Petroleum products covered in this practice are considered to be a single phase and exhibit Newtonian characteristics at the point of sampling.1.2 Applicable Test Methods—This practice is applicable to the XRF methods under the jurisdiction of ASTM Subcommittee D02.03 on Elemental Analysis, and those under the jurisdiction of the Energy Institute’s Test Method Standardization Committee (Table 1). Some of these methods are technically equivalent though they may differ in details (Table 2).1.3 Applicable Fluids—This practice is applicable to petroleum and petroleum products with vapor pressures at sampling and storage temperatures less than or equal to 101 kPa (14.7 psi). Use Practice D4057 or IP 475 to sample these materials. Refer to Practice D5842 when sampling materials that also require Reid vapor pressure (RVP) determination.1.4 Non-applicable Fluids—Petroleum products whose vapor pressure at sampling and sample storage conditions are above 101 kPa (14.7 psi) and liquefied gases (that is, LNG, LPG, etc.) are not covered by this practice.1.5 Sampling Methods—The physical sampling and methods of sampling from a primary source are not covered by this guide. It is assumed that samples covered by this practice are a representative sample of the primary source liquid. Refer to Practice D4057 or IP 475 for detailed sampling procedures.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The elemental analysis of liquid hazardous waste is often important for regulatory and process-specific requirements. This test method provides the user an accurate, rapid method for trace and major element determinations.1.1 This test method covers the determination of trace and major element concentrations by energy-dispersive X-ray fluorescence spectrometry (EDXRF) in liquid hazardous waste (LHW).1.2 This test method has been used successfully on numerous samples of aqueous and organic-based LHW for the determination of the following elements: Ag, As, Ba, Br, Cd, Cl, Cr, Cu, Fe, Hg, I, K, Ni, P, Pb, S, Sb, Se, Sn, Tl, V, and Zn.1.3 This test method is applicable for other elements (Si-U) not listed in 1.2.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D8056-18 Standard Guide for Elemental Analysis of Crude Oil Active 发布日期 :  1970-01-01 实施日期 : 

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Accurate elemental analysis of petroleum products and lubricants is necessary for the determination of chemical properties, which are used to establish compliance with commercial and regulatory specifications.4.2 Inductively coupled plasma-atomic emission spectrometry is one of the more widely used analytical techniques in the oil industry for multi-element analysis as evident from at least twelve standard test methods (for example, Test Methods C1111, D1976, D4951, D5184, D5185, D5600, D5708, D6130, D6349, D6357, D7040, D7111, D7303, and D7691) published for the analysis of fossil fuels and related materials. These have been briefly summarized by Nadkarni (1).54.2.1 Determination of mercury and trace metals in crude oils using atomic spectroscopic methods is discussed in Guide D8056.4.3 The advantages of using an ICP-AES analysis include high sensitivity for many elements of interest in the oil industry, relative freedom from interferences, linear calibration over a wide dynamic concentration range, single or multi-element capability, and ability to calibrate the instrument based on elemental standards irrespective of their elemental chemical forms, within limits described below such as solubility and volatility assuming direct liquid aspiration. Thus, the technique has become a method of choice in most of the oil industry laboratories for metal analyses of petroleum products and lubricants.4.4 In addition to the ICP-AES standards listed in 2.2, a new ICP-MS standard, Test Method D8110, has been issued for analysis of distillate products for multi-element determination of Al, Ca, Cu, Fe, Pb, Mg, and K.1.1 This practice covers information on the calibration and operational guidance for the multi-element measurements using inductively coupled plasma-atomic emission spectrometry (ICP-AES).1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This standard provides a specification for elemental impurity limits in erosion control products used for land application. Erosion control products may include but are not limited to: hydraulically-applied erosion control products, rolled erosion control products, sediment retention devices, gabions and mattresses, and articulated concrete block revetments.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this specification.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Petroleum products may contain elements either in trace concentrations (for example, ng/g (ppb mass)) or in minor to major levels (ppm to mass %). These elements might be characteristic of the crude petroleum or might originate from specific inclusions of additives for beneficial effect in the refined product. Often, such additives have product specifications which control the quality of a product in commerce. Hence, it is important to determine these elements as accurately as possible. Other elements present at trace levels may be harmful to combustion engines causing wear or reduced performance, may cause poisoning of catalysts, or may be of environmental concern as combustion emissions. ICP-MS instrumentation is well-suited for determining these elements and is particularly useful for the determination of the trace level elements that may not be readily achieved by other techniques.5.2 Various elemental analytical techniques such as atomic absorption spectrometry (AAS), for example, Test Method D3605 and D4628; inductively coupled plasma atomic emission spectrometry (ICP-AES), for example, Test Methods D7111, D4951, and D5185; X-ray fluorescence (XRF), for example, Practice D7343, Test Method D7220, Test Methods D4927, and Test Method D6443; or graphite furnace atomic absorption spectrometry (GFAAS), for example, Test Method D6732 are used for this purpose. This test method is the first example where ICP-MS is used for elemental analysis of petroleum products.5.3 This test method covers the rapid determination of seven elements in distillate petroleum products. Test times approximate a few minutes per test specimen, and quantification for most elements is in the low to sub ng/g (ppb mass) range. High analysis sensitivity can be achieved for some elements that are difficult to determine by other techniques.1.1 This test method describes the procedure for the determination of trace elements in light and middle distillate petroleum products using inductively coupled plasma mass spectrometry (ICP-MS).1.2 This test method should be used by analysts experienced in the use of inductively coupled plasma mass spectrometry (ICP-MS) with knowledge of interpretation of spectral, isobaric, polyatomic, and matrix interferences, as well as procedures for their correction or reduction.1.3 The table in 6.1 lists elements for which the test method applies along with recommended isotope. Actual working detection limits are sample dependent and, as the sample matrix varies, these detection limits may also vary.1.4 The concentration range of this test method is typically from low to sub ng/g (ppb mass) to 1000 ng/g (ppb mass), however the precision and bias statement is specified for a smaller concentration range based on test samples analyzed in the ILS, see the table in Section 18. The test method may be used for concentrations outside of this range; however, the precision statements may not be applicable.1.4.1 This test method shall be further developed to extend that table to include additional elements.1.5 This test method uses metallo-organic standards (organometallic or organosoluble metal complex) for calibration and does not purport to quantitatively determine insoluble particulates. Analytical results are particle size dependent, and low results are obtained for particles larger than a few micrometers as these particles may settle out in the sample container and are not effectively transported through the sample introduction system.1.6 Elements present at concentrations above the upper limit of the calibration curves can be determined with additional, appropriate dilutions and with no degradation of precision.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 8.2, 8.7, and Section 9.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Some oils are formulated with organo-metallic additives which act as detergents, antioxidants, antiwear agents, and so forth. Some of these additives contain one or more of these elements: barium, calcium, phosphorus, sulfur, and zinc. These test methods provide a means of determining the concentration of these elements which in turn provides an indication of the additive content of these oils.4.2 Several additive elements and their compounds are added to the lubricating oils to give beneficial performance (see Table 2).1.1 These test methods cover the determination of barium, calcium, phosphorus, sulfur, and zinc in unused lubricating oils at element concentration ranges shown in Table 1. The range can be extended to higher concentrations by dilution of sample specimens. Additives can also be determined after dilution. Two different methods are presented in these test methods.1.2 Test Method A (Internal Standard Procedure)—Internal standards are used to compensate for interelement effects of X-ray excitation and fluorescence (see Sections 8 through 13).1.3 Test Method B (Mathematical Correction Procedure)—The measured X-ray fluorescence intensity for a given element is mathematically corrected for potential interference from other elements present in the sample (see Sections 14 through 19).1.4 The preferred concentration units are mass % barium, calcium, phosphorus, sulfur, or zinc.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 Often it is necessary to dissolve the sample, particularly if it is a solid, before atomic spectroscopic measurements. It is advantageous to use a microwave oven for dissolution of such samples since it is a far more rapid way of dissolving the samples instead of using the traditional procedures of dissolving the samples in acid solutions using a pressure decomposition vessel, or other means.5.2 The advantage of microwave dissolution includes faster digestion that results from the high temperature and pressure attained inside the sealed containers. The use of closed vessels also makes it possible to eliminate uncontrolled trace element losses of volatile species that are present in a sample or that are formed during sample dissolution. Volatile elements arsenic, boron, chromium, mercury, antimony, selenium, and tin may be lost with some open vessel acid dissolution procedures. Another advantage of microwave aided dissolution is to have better control of potential contamination in blank as compared to open vessel procedures. This is due to less contamination from laboratory environment, unclean containers, and smaller quantity of reagents used (9).5.3 Because of the differences among various makes and models of satisfactory devices, no detailed operating instructions can be provided. Instead, the analyst should follow the instructions provided by the manufacturer of the particular device.5.4 Mechanism of Microwave Heating—Microwaves have the capability to heat one material much more rapidly than another since materials vary greatly in their ability to absorb microwaves depending upon their polarities. Microwave oven is acting as a source of intense energy to rapidly heat the sample. However, a chemical reaction is still necessary to complete the dissolution of the sample into acid mixtures. Microwave heating is internal as well as external as opposed to the conventional heating which is only external. Better contact between the sample particles and the acids is the key to rapid dissolution. Thus, heavy nonporous materials such as fuel oils or coke are not as efficiently dissolved by microwave heating. Local internal heating taking place on individual particles can result in the rupture of the particles, thus exposing a fresh surface to the reagent contact. Heated dielectric liquids (water/acid) in contact with the dielectric particles generate heat orders of magnitude above the surface of a particle. This can create large thermal convection currents which can agitate and sweep away the stagnant surface layers of dissolved solution and thus, expose fresh surface to fresh solution. Simple microwave heating alone, however, will not break the chemical bonds, since the proton energy is less than the strength of the chemical bond (5).5.4.1 In the electromagnetic irradiation zone, the combination of the acid solution and the electromagnetic radiation results in near complete dissolution of the inorganic constituents in the carbonaceous solids. Evidently, the electromagnetic energy promotes the reaction of the acid with the inorganic constituents thereby facilitating the dissolution of these constituents without destroying any of the carbonaceous material. It is believed that the electromagnetic radiation serves as a source of intense energy which rapidly heats the acid solution and the internal as well as the external portions of the individual particles in the slurry. This rapid and intense internal heating either facilitates the diffusion processes of the inorganic constituents in solution or ruptures the individual particles thereby exposing additional inorganic constituents to the reactive acid. The heat generated in the aqueous liquid itself will vary at different points around the liquid-solid interface and this may create large thermal convection currents which can agitate and sweep away the spent acid solution containing dissolved inorganic constituents from the surface layers of the carbonaceous particles thus exposing the particle surfaces to fresh acid (16).5.4.2 Unlike other heating mechanisms, true control of microwave heating is possible because stopping of the application of energy instantly halts the heating (except the exotherms which can be rapid when pure compounds are digested). The direction of heat flow is reversed from conventional heating, as microwave energy is absorbed by the contents of the container, energy is converted to heat, and the bulk temperature of the contents rises. Heat is transferred from the reagent and sample mixture to the container and dissipated through conduction to the surrounding atmosphere. Newer synthesized containers made up of light yet strong polymers can withstand over 240 °C temperatures and over 800 psi pressure. During the digestion process of samples containing organic compounds, largely insoluble gases such as CO2 are formed. These gases combine with the vapor pressure from the reagents, at any temperature, to produce the total pressure inside the vessel. Since the heat flow from a microwave digestion vessel is reversed from that of resistive devices, the total pressures generated for microwave dissolutions are significantly lower at the same temperature than other comparably heated devices or systems. This means larger samples can be digested at higher temperatures and lower pressures than would normally be expected from such pressurized vessels. Sample size should be controlled to prevent rapid exotherm rupture, exacerbated by excess CO2 generation. However, the pressure limitations of the vessel still restrict both the sample size that can be used and the maximum temperature that can be achieved due to the vapor pressure resulting from the reagents (17).5.4.3 Organic and polymer samples can be especially problematic because they are highly volatile and produce large amounts of gaseous by-products such as CO2 and NOx. As a result larger sample sizes will produce higher pressures inside the digestion vessel. Generally, no more than 1 g of these sample types can be digested in a closed vessel (18).5.4.3.1 While in open digestion vessel systems the operating temperatures are limited by the acid solutions’ boiling points, temperatures in the 200 °C to 260 °C range can be typically achieved in sealed digestion vessels. This results in a dramatic acceleration of the reaction kinetics, allowing the digestion reactions to be carried out in a shorter time period. The higher temperatures, however, result in a pressure increase in the vessel and thus in a potential safety hazard. Rapid heating of the sample solution can induce exothermic reactions during the digestion process. Therefore in modern microwave digestion systems, sensors and interlocks for temperature and pressure control are introduced. Since different types of sample behave differently in microwave field, heating control is necessary in this operation (19).5.4.4 Microwave heating occurs because microwave reactors generate an electromagnetic field that interacts with polarizable molecules or ions in the materials. As the polarized species compete to align their dipoles with the oscillating field, they rotate, migrate, and rub against each other, causing them to heat up. This microwave effect differs from indirect heating by conduction achieved by using a hot plate (20).1.1 This practice covers the procedure for use of microwave radiation for sample decomposition prior to elemental determination by atomic spectroscopy.1.1.1 Although this practice is based on the use of inductively coupled plasma atomic emission spectrometry (ICP-AES) and atomic absorption spectrometry (AAS) as the primary measurement techniques, other atomic spectrometric techniques may be used if lower detection limits are required and the analytical performance criteria are achieved.1.2 This practice is applicable to both petroleum products and lubricants such as greases, additives, lubricating oils, gasolines, and diesels.1.3 Although not a part of Committee D02’s jurisdiction, this practice is also applicable to other fossil fuel products such as coal, fly ash, coal ash, coke, and oil shale.1.3.1 Some examples of actual use of microwave heating for elemental analysis of fossil fuel products and other materials are given in Table 1.(A) The boldface numbers in parentheses refer to the list of references at the end of this standard.1.3.2 Some additional examples of ASTM methods for microwave assisted analysis in the non-fossil fuels area are included in Appendix X1.1.4 During the sample dissolution, the samples may be decomposed with a variety of acid mixture(s). It is beyond the scope of this practice to specify appropriate acid mixtures for all possible combinations of elements present in all types of samples. But if the dissolution results in any visible insoluble material, this practice may not be applicable for the type of sample being analyzed, assuming the insoluble material contains some of the analytes of interest.1.5 It is possible that this microwave-assisted decomposition procedure may lead to a loss of “volatile” elements such as arsenic, boron, chromium, mercury, antimony, selenium, and/or tin from the samples. Chemical species of the elements is also a concern in such dissolutions since some species may not be digested and have a different sample introduction efficiency.1.6 A reference material or suitable NIST Standard Reference Material should be used to confirm the recovery of analytes. If these are not available, the sample should be spiked with a known concentration of analyte prior to microwave digestion.1.7 Additional information on sample preparation procedures for elemental analysis of petroleum products and lubricants can be found in Practice D7455.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Sections 6 and 7.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Elemental analysis serves as a quality control measure for post-reactor studies, for additive levels in formulated resins, and for finished products. X-ray fluorescence spectrometry is an accurate and relatively fast method to determine mass fractions of multiple elements in polyethylene and polypropylene materials.1.1 This test method covers a general procedure for the determination of elemental content in polyolefins by wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry, in mass fraction ranges typical of those contributed by additives, catalysts, and reactor processes. The elements covered by this test method include fluorine, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, calcium, titanium, chromium, and zinc in the composition ranges given in Table 1.1.1.1 This test method does not apply to polymers specifically formulated to contain flame retardants including brominated compounds and antimony trioxide.1.1.2 This test method does not apply to polymers formulated to contain high levels of compounds of vanadium, molybdenum, cadmium, tin, barium, lead, and mercury because the performance can be strongly influenced by spectral interferences or interelement effects due to these elements.NOTE 1: Specific methods and capabilities of users may vary with differences in interelement effects and sensitivities, instrumentation and applications software, and practices between laboratories. Development and use of test procedures to measure particular elements, mass fraction ranges or matrices is the responsibility of individual users.NOTE 2: One general method is outlined herein; alternative analytical practices can be followed, and are attached in notes, where appropriate.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 10.NOTE 3: There is no known ISO equivalent to this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
34 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页