微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This specification covers commercial, structural, high-strength low-alloy, and ultra-high strength steel sheet in coils and cut lengths produced by the twin-roll casting process.1.2 The steel sheet is available in the designations listed in Section 4.1.3 The material is available in the following sizes:  Thickness: 0.027 to 0.078 in. [0.7 to 2.0 mm]    Width: up to 79 in. [2000 mm]  1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.NOTE 1: A description of the Twin-roll Casting Process is included in Appendix X1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers dry-powder resins of polytetrafluoroethylene (PTFE) resin produced from dispersion. PTFE mixtures with additives are not covered in this specification. This specification covers type I and type II PTFE. The resins shall be tested for bulk density, particle size, water content, melting peak temperature, tensile strength, elongation at break, standard specific gravity, extrusion pressure, thermal instability index, and stretching void index. Specimen preparation, testing, inspection, and packaging shall be in accordance to the procedures indicated in this specification.1.1 This specification2 covers polytetrafluoroethylene (PTFE) prepared by coagulation of a dispersion. These PTFE resins are homopolymers of tetrafluoroethylene or modified homopolymers containing not more than 1 % by weight of other fluoromonomers. The materials covered herein do not include mixtures of PTFE with additives such as colors, fillers, or plasticizers; nor do they include reprocessed or reground resin or any fabricated articles because the properties of such materials have been irreversibly changed when they were fibrillated or sintered.1.2 The values stated in SI units as detailed in IEEE/ASTM SI-10 are to be regarded as standard. The values given in parentheses are for information only.1.3 The following safety hazards caveat pertains only to the Specimen Preparation Section, Section 9, and the Test Methods Section, Section 10, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Warning note in 9.1.1 for a specific hazards statement.NOTE 1: Information in this specification is technically equivalent to related information in ISO 20568-1 and ISO 20568-2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The procedure is primarily intended to evaluate chrome leather intended for use in hydraulic systems under circumstances where metal corrosion is a serious factor. A high relative humidity is used for the purpose of accelerating the results.1.1 This test method covers the qualitative and quantitative determination of corrosion produced by leather in contact with metal. This test method does not apply to wet blue.1.2 The values stated in inch-pound units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the minimum performance requirements and associated test methods for annealed transparent or non-transparent soda-lime-silicate glass containers that are produced for use as candle containers. The glass containers shall conform to specified annealing and thermal shock requirements, and shall undergo appropriate scratch testing to ensure that residual stress is reduced to a commercially acceptable level.1.1 This specification is specifically for soda-lime-silicate glass containers that are intended to be used as filled candle containers. This specification does not apply to other glass accessories used for candles, such as votive holders, hurricanes, and glass holders used with free-standing candles. The glass manufacturer or glass secondary processor is responsible for the compliance of the product and maintaining documentation of test results during the manufacturing process.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 These test methods cover the determination of major organic impurities in refined phenol manufactured by the cumene (isopropylbenzene) process. Two test methods are employed to determine the stated major impurities. 1.2 Test Method A determines the concentration of major impurities such as mesityl oxide, cumene, [alpha]-methylstyrene, 2-methylbenzofuran, acetophenone, and dimethylbenzyl alcohol. 1.3 Test Method B determines the hydroxyacetone content. 1.4 The following applies to all specified limits in this standard: for purposes of determining conformance with this standard, an observed value or a calculated value shall be rounded off "to the nearest unit" in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29. 1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers high-strength low-alloy steel shapes of structural quality, produced by quenching and self-tempering process (QST). The chemical analysis of the heat and of the steel product analysis shall conform to the chemical requirements prescribed by the reference materials. The Charpy V-notch test shall be performed to determine if the material conforms to the required tensile properties.1.1 This specification covers high-strength low-alloy structural steel shapes in Grades 50 [345], 60 [415], 65 [450], 70 [485], and 80 [550], produced by the quenching and self-tempering process (QST). The shapes are intended for riveted, bolted or welded construction of bridges, buildings and other structures.1.2 The QST process consists of in line heat treatment and cooling rate controls which result in mechanical properties in the finished condition that are equivalent to those attained using heat treating processes which entail reheating after rolling. A description of the QST process is given in Appendix X1.1.3 Due to the inherent characteristics of the QST process, Grade 50 [345], 60 [415], 65 [450], and 70 [485] shapes shall not be formed nor post weld heat treated at temperatures exceeding 1100°F [595°C] and Grade 80 [550] shapes shall not be formed nor post weld heat treated at temperatures exceeding 1000°F [540°C].1.4 When the steel is to be welded, it is presupposed that a welding procedure suitable for the grade of steel and intended use or service will be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.1.5 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with this specification.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

The use of sound speed values to determine changes in the elastic constants due to applied or residual stress requires that such measurements be of high precision and low bias. For that reason, special evaluation tests to determine a representative precision and bias for the specific technique, method, and equipment setup used are given. Speed of sound is a measure that depends on the accurate measurements of length of path of travel and transit time or other related parameters such as frequency, etc. Both measurements are subject to certain interpretations and assumptions and are highly dependent on laboratory expertise. This practice provides a means of checking overall technique. This practice shall be used when it is necessary to assess the systematic and random errors associated with a particular speed of sound measurement in a solid medium. It can be used to check both equipment performance and measurement technique for these errors. It can also be used to study inherent errors in a particular method. It can also be used to assess proposed corrections to sound speed measurements such as the phase corrections of Papadakis (3, 4). The resultant precision and bias determined by the use of the described block represents a more ideal situation than the same measurement performed in practice, in the field. Thus, the error for the specific field measurement may be larger than indicated by this test. This test represents the best error condition for a given technique and practice. 1.1 This practice provides a means for evaluating both systematic and random errors for ultrasonic speed-of-sound measurement systems which are used for evaluating material characteristics associated with residual stress and which may also be used for nondestructive measurements of the dynamic elastic moduli of materials. Important features and construction details of a reference block crucial to these error evaluations are described. This practice can be used whenever the precision and bias of sound speed values are in question.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Landscaping and construction professionals and golf course designers are a few of the typical users of this standard. When physically evaluating a soil, relative to its suitability to support plant growth (primarily grasses), tests must be performed to determine the presence and amount of solid matter compatibility that is then used to determine potential air-void content, water-holding ability, and deleterious materials. Rotary kiln produced porous ceramic material is a mineral amendment that can be added to a topsoil to increase its suitability to support plant growth.5.2 Typical general ranges of soil content for suitable topsoils are presented in Specification D5268. It should be recognized, however, that in some geographic regions, concurrence with the values in the referenced table could be difficult. In such situations, locally acceptable specifications need to be developed.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/ and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This practice covers the material characteristics, physical requirements, and sampling appropriate for the designation of the rotary kiln produced porous ceramic material as a mineral amendment. The porous ceramic material can be used to replace the sand content of a topsoil or it can be blended into an existing topsoil. Typically 5-20 % by mass of porous ceramics are used when blending with or adding to a topsoil.1.2 The potential/success of a topsoil amendment is measured/determined by its ability to provide or enhance some or all of the desired properties/characteristics of the topsoil that may be deficient in the unamended topsoil.1.3 Soils typically consist of three components: water, air and solids. Solids can be further divided into two sub-components: organic matter, such as peat, muck or other decayed matter, and inorganic mineral matter, such as clay, silt and sand. Porous ceramic falls into the inorganic mineral matter sub-component and is generally used in horticultural topsoil applications as a substitute/alternative or addition for the sand component of soil. See Specification D5268, Table 1.1.4 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.5.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers high-strength low-alloy structural steel plates that were produced by the thermo-mechanical controlled process (TMCP). This method consists of rolling reductions and cooling rate controls, which result in mechanical properties in the finished plate that are equivalent to those attained using conventional rolling and heat treatment processes.1.1 This specification covers steel plates produced by the thermo-mechanical controlled process (TMCP). Five grades are defined by the yield strength: 50 [345], 60 [415], 65 [450], 70 [485], and 80 [550]. The plates are intended primarily for use in welded steel structures.1.2 The TMCP method consists of rolling reductions and cooling rate controls that result in mechanical properties in the finished plate that are equivalent to those attained using conventional rolling and heat treatment processes, which entail reheating after rolling. A description of the TMCP method is given in Appendix X1.1.3 The maximum thicknesses available in the grades covered by this specification are shown in Table 1.1.4 Due to the special combination of mechanical and thermal treatment inducing lower rolling temperatures than for conventional hot rolling the plates cannot be formed at elevated temperatures without sustaining significant losses in strength and toughness. The plates may be formed and post-weld heat-treated at temperatures not exceeding 1050°F [560°C]. Higher temperatures may be possible if proven that minimum mechanical characteristics are retained after tests with specimens in the post-weld heat treatment (PWHT) condition. For flame straightening higher temperatures can be used in accordance with the steel manufacturer’s recommendations.1.5 If the steel is to be welded, a welding procedure suitable for the grade of steel and intended use or service is to be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.1.6 Supplementary requirements are available but shall apply only if specified in the purchase order.1.7 Units—This specification is expressed in both inch-pound units and SI units; however, unless the purchase order or contract specifies the applicable M specification designation (SI units), the inch-pound units shall apply. The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system is to be used independently of the other. Combining values from the two systems may result in nonconformances with the standard.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The use of geomembranes as barrier materials to restrict liquid migration from one location to another in soil and rock has created a need for a standard test method to evaluate the quality of geomembrane seams produced by thermo-fusion methods. In the case of geomembranes, it has become evident that geomembrane seams can exhibit separation in the field under certain conditions. Although this is an index-type test method used for quality assurance and quality control purposes, it is also intended to provide the quality assurance engineer with sufficient seam peel and shear data to evaluate seam quality. Recording and reporting data, such as separation that occurs during the peel test and elongation during the shear test, will allow the quality assurance engineer to take measures necessary to ensure the repair of inferior seams during facility construction, and therefore, minimize the potential for seam separation in service.1.1 This test method describes destructive quality control and quality assurance tests used to determine the integrity of geomembrane seams produced by thermo-fusion methods. This test method presents the procedures used for determining the quality of nonbituminous bonded seams subjected to both peel and shear tests. These test procedures are intended for nonreinforced geomembranes only.1.2 The types of thermal field seaming techniques used to construct geomembrane seams include the following:1.2.1 Hot Air—This technique introduces high-temperature air or gas between two geomembrane surfaces to facilitate melting. Pressure is applied to the top or bottom geomembrane, forcing together the two surfaces to form a continuous bond.1.2.2 Hot Wedge (or Knife)—This technique melts the two geomembrane surfaces to be seamed by running a hot metal wedge between them. Pressure is applied to the top or bottom geomembrane, or both, to form a continuous bond. Some seams of this kind are made with dual bond tracks separated by a nonbonded gap. These seams are sometimes referred to as dual hot wedge seams or double-track seams.1.2.3 Extrusion—This technique encompasses extruding molten resin between two geomembranes or at the edge of two overlapped geomembranes to effect a continuous bond.1.3 The types of materials covered by this test method include the following:1.3.1 Very low-density polyethylene (VLDPE).1.3.2 Linear low-density polyethylene (LLDPE).1.3.3 Very flexible polyethylene (VFPE).1.3.4 Linear medium-density polyethylene (LMDPE).1.3.5 High-density polyethylene (HDPE).1.3.6 Polyvinyl chloride (PVC).1.3.7 Flexible polypropylene (fPP).NOTE 1: The polyethylene identifiers presented in 1.3.1 – 1.3.5 describe the types of materials typically tested using this test method. These are industry-accepted trade descriptions and are not technical material classifications based upon material density.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Overview: 4.1.1 Assurance of product quality is derived from careful attention to many factors but is not limited to raw material acceptance, software workflow definition, product and process design and control, printing and post processing, equipment and systems installation, maintenance, and in-process and end-product testing.4.1.2 By managing these factors, a manufacturer can establish confidence that all finished manufactured units from successive lots will be acceptable and meet lot release criteria.4.1.3 The basic principles of quality assurance (QA) have as their goal the production of articles that are fit for their intended use. These principles may be stated as:4.1.3.1 Quality, safety, and effectiveness shall be designed and built into the product as well as the production process.4.1.3.2 AM product characteristics all cannot currently be verified after the process without destructive testing and therefore requires validation. Suitable consideration should be designed into the product and controls should be applied to the process during process validation.4.1.3.3 Critical steps of the production process impacting quality shall be controlled to maximize the probability that the finished product meets all quality and design specifications.4.1.4 Process validation is a key element in ensuring that these QA goals are met. Routine end-product testing alone is often not sufficient to assure product quality. Some end-product tests have limited sensitivity. In some cases, destructive testing would be required to show that the manufacturing process is adequate, and in other situations, end-product testing does not reveal all variations that may occur in the product that may have an impact on device performance. However, successfully validating a process may reduce the dependence on intensive in-process and finished product testing. Note that, in most cases, end-product testing plays a major role in supporting QA goals, that is, validation and end-product testing are not mutually exclusive.4.1.5 Key process variables should be monitored and documented using statistical process control where applicable. Analysis of the data collected from monitoring should establish the potential variability of process parameters for individual production runs to ensure that a process is within acceptable control limits and the equipment can consistently produce the product within specification.4.2 Preliminary Considerations: 4.2.1 A manufacturer should evaluate all factors that affect product quality through appropriate documented process characterization.4.2.2 Risk management and an analysis file shall be created in line with ISO 14971. These factors may vary considerably among different products, manufacturing technologies, and facilities. No single approach to process validation will be appropriate and complete in all cases; however, the following quality steps should be undertaken.4.2.3 All pertinent aspects of the production processes that have an impact on device design (product’s end use) should be considered during process validation. These aspects include, but are not necessarily limited to, performance, reliability, and stability. Performance limits and variation should be established for each characteristic acceptance criteria and expressed in readily measurable terms. Once a product specification is defined it is important that any changes to it be made in accordance with documented change control procedures and the device history file.1.1 This practice provides an overview of how to perform process validation for medical devices manufactured using PBF/LB/M. The topics that will be covered include machine qualifications, software used in the manufacturing process, the importance of design specification and verification on process validation, and raw materials.1.2 This practice also provides recommendations for process characterization, risk management, additive manufacturing (AM) facility qualification, and process control as a prerequisite for qualification activity, including installation qualification/operational qualification/performance qualification (IQ/OQ/PQ).1.3 The practice is primarily focused on non-device-specific AM system(s) validation. Additional information may be needed in reference to the performance of the actual device.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers the material, chemical and mechanical requirements for aluminum-alloy castings produced by the thixocast, rheocast, semi-solid and squeeze casting processes. It does not apply to castings used in aerospace applications. Castings shall conform to the chemical composition limits and tensile properties specified for each alloy designation, and those produced for governmental or military agencies, or both, shall additionally adhere to specified material and foundry control requirements. Castings shall also pass quality checks based on the following attributes: imperfections; internal soundness; pressure tightness; fillets, ribs, and corners; ejector pins, pin marks, pin flash, and flash removal; casting flash removal; surface finish; die cast lettering and ornamentation; machining stock allowances; and workmanship. Heat treatment and repair recommendations are also included herein.1.1 This specification covers aluminum-alloy castings, produced by Squeeze Casting, and the Semi-Solid Thixocast and Rheocast casting processes, designated as shown in Table 1.1.2 This specification is for aluminum-alloy squeeze castings, and semi-solid Thixocast and Rheocast castings used in general purpose applications. It may not address the mechanical properties, integrity testing, and verification required for highly loaded or safety critical applications.1.3 Alloy and temper designations are in accordance with ANSI H35.1/H35.1 (M).1.4 Unless the order specifies the “M” specification designation, the material shall be furnished to the inch-pound units.1.5 For acceptance criteria for inclusion of new aluminum and aluminum alloys and their properties in this specification, see Annex A1 and Annex A2.1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers cold-rolled, carbon, structural, and high-strength low-alloy, in coils and cut lengths produced by the twin-roll casting process. Cold-rolled steel sheet is available in the following designations: commercial steel, drawing steel, structural steel, and high-strength low-alloy steel. Sheet steel grades defined by this specification are suitable for welding if appropriate welding conditions are selected. For certain welding processes, if more restrictive composition limits are desirable, they shall be specified at the time of inquiry and confirmed at the time of ordering. The material shall be capable of being bent, at room temperature, in any direction through 180° flat on itself without cracking on the outside of the bent portion. Two tension tests shall be made from each heat or from each 50 tons [45,000 kg]. Yield strength shall be determined by either the 0.2 % offset method or the 0.5 % extension under load method unless otherwise specified.1.1 This specification covers cold-rolled, carbon, structural, and high-strength low-alloy, in coils and cut lengths produced by the twin-roll casting process.1.2 Cold rolled steel sheet produced by the twin-roll casting process is available in the designations as listed in 4.1.1.3 This specification does not apply to steel strip as described in Specification A109/A109M.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 When physically evaluating a soil, relative to its suitability to support plant growth (primarily grasses), tests must be performed to determine the presence and amount of solid matter (organic and inorganic) compatibility that can determine potential air-void content and water-holding ability, and finally, deleterious materials.4.2 Typical general ranges of soil content for suitable topsoils are presented in Specification D5268. It should be recognized, however, that in some geographic regions, concurrence with the values in the referenced table would be difficult. In such situations, locally acceptable specifications need to be developed.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/ and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This guide covers the material characteristics, physical requirements, and sampling appropriate for the designation of the rotary kiln produced expanded shale, clay or slate (ESCS) material as a mineral amendment.1.2 The presence in the topsoil of the proper nutrient and pH level is necessary for healthy plant growth. This guide does not, however, cover a determination of the nutrients, nor their availability.2NOTE 1: The nutrient content of topsoil is important and the chemicals usually evaluated are nitrogen, phosphate, and potassium. Nutrient deficiencies may be corrected by using fertilizers. Excess soluble salts should be examined as to their desirability. The acidity or alkalinity of the soil is also important. Excess acidity may be corrected by the application of lime dust. Excess alkalinity may be corrected by the application of sulfur or other suitable acidifying compounds. The latter item, in addition to lowering pH, also could be considered as an aggregate when considering the particle size distribution.1.3 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This guide provides guidance as to the appropriate/typical mineralogy observed when iron and steel slag is produced during a variety of processes in the manufacture of iron and steel.4.2 Slag can be considered a product based on the mineralogy of samples that are tested using X-ray diffraction, phase recognition and characterization, powdered XRD-Rietveld analysis, and SEM-PARC results, using this guide.1.1 This standard is intended to provide guidance as to the appropriate/typical mineralogy observed when iron and steel slag, produced during the manufacture of iron and steel, is designated as a product. The included information covers the mineral properties of blast furnace slag and steel slag when they are manufactured in conjunction with the production of iron or steel, or both (Note 1).NOTE 1: This guide is not intended to be used to determine the applicability of iron or steel slag, or both, for various applications. Terminology D8 designates steel slag as a product, while Terminology C125 designates blast furnace slag as a product. Its sole intent is to provide guidance as to the typical mineralogy when the iron or steel slag, or both, is designated as a product.1.2 The values stated in SI units are to be regarded as standard. No other units are utilized in this standard.1.3 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) should not be considered as requirements of the specification.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
20 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页