微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

4.1 This test method is used for quantitative determination of asphalt binder in asphalt mixtures and asphalt pavement samples for specification acceptance, service evaluation, control, and research.4.2 Aggregates obtained by this method may be used for sieve analysis using Test Method D5444. Extracted asphalt binder from this test method may be recovered using Test Method D1856 or Practice D5404/D5404M.NOTE 1: The quality of results produced by this standard is dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guidance provides a means of evaluating and controlling some of those factors.1.1 This test method covers the quantitative determination of asphalt binder content in asphalt mixtures and pavement specimens, using the automated computer controller or human-machine interface system (HMI), to perform a solvent extraction for specification acceptance, service evaluation, quality control, and research.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 An ILS is being conducted according to Practice E691 and will be available on or before December 2018. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Excessive levels of hydrogen sulfide in the vapor phase above residual fuel oils in storage tanks can result in health hazards, violation of local occupational health and safety regulations, and public complaint. An additional concern is corrosion that can be caused by the presence of H2S during refining or other activities. Control measures to maintain safe levels of H2S require a precise method for the measurement of potentially hazardous levels of H2S in fuel oils. (Warning—Safety. Hydrogen sulfide (H2S) is a very dangerous, toxic, explosive and flammable, colorless and transparent gas which can be found in crude oil and can be formed during the manufacture of the fuel at the refinery and can be released during handling, storage, and distribution. At very low concentrations, the gas has the characteristic smell of rotten eggs. However, at higher concentrations, it causes a loss of smell, headaches, and dizziness, and at very high concentrations, it causes instantaneous death. It is strongly recommended that personnel involved in the testing for hydrogen sulfide are aware of the hazards of vapor-phase H2S and have in place appropriate processes and procedures to manage the risk of exposure.)5.2 This test method was developed so refiners, fuel terminal operators, and independent testing laboratory personnel can rapidly and precisely measure the amount of H2S in residual fuel oils and distillate blend stocks, with a minimum of training, in a wide range of locations.5.3 Test Method D5705 provides a simple and consistent field test method for the rapid determination of H2S in the residual fuel oils vapor phase. However it does not necessarily simulate the vapor phase H2S concentration of a fuel storage tank nor does it provide any indication of the liquid phase H2S concentration.5.4 Test Method D6021 does measure the H2S concentration of H2S in the liquid phase, however it requires a laboratory and a skilled operator to perform the complex procedure and calculations, and does not offer any reproducibility data. This test method (D7621) offers a 15 min automated test, simplicity, full precision, and a degree of portability.5.5 H2S concentrations in the liquid and vapor phase attempt to reach equilibrium in a static system. However, this equilibrium and the related liquid and vapor concentrations can vary greatly depending on temperature and the chemical composition of the liquid phase. The equilibrium of the vapor phase is disrupted the moment a vent or access point is opened to collect a sample.1.1 This test method covers procedures (A and B) for the determination of the hydrogen sulfide (H2S) content of fuel oils such as marine residual fuels and blend stocks, with viscosity up to 3000 mm2s-1 at 50 °C, and marine distillate fuels, as measured in the liquid phase.NOTE 1: Specification fuels falling within the scope of this test method are: ASTM Specification D396, MIL-DTL-16884, and ISO 8217.1.2 Procedure A has been shown to eliminate interferences such as thiols (mercaptans) and alkyl sulfides. Procedure B can give elevated results if such interferences are present (see Annex A2).NOTE 2: A procedure for measuring the amount of hydrogen sulfide in crude oil can be found in Appendix X1. Full precision for Appendix X1 has not yet been determined.1.3 Valid ranges for the precision are given in Table 2 and Table 3. Measurements can be made outside these ranges however precision has not been determined.1.4 Samples containing FAME do not affect the measurement of hydrogen sulfide by this test method.1.5 The values stated in SI units are to be regarded as standard. Non-SI units given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is intended to generate an extract with a concentration of the target analyte(s) representative of the expected release under the scenario simulated, and which can be compared with concentration levels acceptable in waste disposal, treatment, or production activities.5.2 The extraction conditions of the test method were chosen to simulate a potential disposal scenario to which the wastes may be exposed.5.3 One intent of this test method is that the amount of acid in the extraction fluids reflects the acid available from the leachate of a specific landfill where municipal and industrial wastes were co-disposed.65.4 One intent of this test method is to not allow the pH of the extraction fluid to be lower than that of the leachate of a specific landfill where municipal and industrial wastes were co-disposed. Therefore, the pH of the extraction fluid was chosen with the following considerations:(1) Not to be less than 4.93 ± 0.05 for the extraction of wastes with an acid neutralization capacity of less than the acid available in the total volume of extraction fluid used in the method (Extraction Fluid No. 1).(2) At 2.88 ± 0.05, as defined by the pH of the acid, for the extraction of wastes with an acid neutralization capacity of more than the acid available in the extraction fluid used in the method (Extraction Fluid No. 2).5.5 The interpretation and use of the results of this test method are limited by the assumptions of a single co-disposal scenario and by the factors affecting the composition of a landfill leachate and chemical or other differences between a selected extraction fluid and the real landfill leachate.5.6 This test method may be affected by biological changes in the waste, and it is not designed to isolate or measure the effect of such processes.5.7 This test method produces extracts that are amenable to the determination of both minor and major constituents. When minor constituents are being determined, it is especially important that precautions be taken in sample storage and handling to avoid possible contamination of the samples.5.8 The agitation technique, rate, liquid-to-solid ratio, and filtration conditions specified in the method may not be suitable for extracting all types of wastes.5.9 This test method is intended to extract the samples in their original physical state as is, without any size reduction. However, the sample/extractor interaction is expected to correlate with the environmental conditions to which a waste may be exposed.75.10 The extraction conditions defined by this test method are expected to yield steady-state concentrations, determined by the extraction liquid-to-solid ratio and the duration of the extraction, which may or may not agree with the concentration of an equilibrium.1.1 This test method is applicable to the extraction of samples of treated or untreated solid wastes or sludges, or solidified waste samples, to provide an indication of the leaching potential.1.2 This test method is intended to provide an extract for measurement of the concentration of the analytes of concern. The measured values may be compared against set or chosen acceptance levels in some applications.1.3 If the sole application of the test method is such a pass/fail comparison and a total analysis of the waste demonstrates that individual analytes are not present in the waste, or that the chosen acceptance concentration levels could not possibly be exceeded, the test method need not be run.1.4 If the sole application of the test method is such a pass/fail comparison and an analysis of any one of the liquid fractions of the extract indicates that the concentration of the target analyte is so high that, even after accounting for dilution from the other fractions of the extract, it would be equal to or above an acceptance concentration level, then the waste fails the test. In such a case it may not be necessary to analyze the remaining fractions of the extract.1.5 This test method is intended to provide an extract suitable for the measurement of the concentration of analytes that will not volatilize under the conditions of the test method.1.6 Presence of volatile analytes may be established if an analysis of the extract obtained using this test method detects the target volatile analyte. If its concentration is equal to or exceeds an acceptance level for that analyte, the waste fails the test. However, extract from this test method shall not be used to determine the concentration of volatile organic analytes.1.7 This test method is intended to describe only the procedure for performing a batch extraction. It does not describe all of the sampling and analytical requirements that may be associated with the application of this test method.1.8 The values stated in either SI or inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific precautionary statement, see Note 8.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Solvent extraction of soils and sediments can provide information on the availability of petroleum hydrocarbons to leaching, water quality changes, or other site conditions.5.2 Rapid heating, in combination with temperatures in excess of the atmospheric boiling point of acetone/hexane, reduces sample preparation or extraction times.5.3 Reduced amounts of solvents are required and solvent loss due to boiling and evaporation are eliminated by use of closed extraction vessels.1.1 This practice covers the solvent extraction of total petroleum hydrocarbon (TPH) from soils and sediments, using closed vessel microwave heating, for subsequent determination by gravimetric or gas chromatographic techniques.1.2 This practice is recommended only for solid samples that can pass through a ten mesh screen (approximately 2 mm openings).1.3 The solvent extract obtained by this practice may be analyzed for total or specific nonvolatile and semivolatile petroleum hydrocarbons but may require sample clean-up procedures prior to specific compound analysis.1.4 This practice is limited to solvents that are recommended for use in microwave solvent extraction systems.1.5 The values stated in SI units are to be regarded as standard.1.5.1 Exception—The inch-pound values given for units of pressure are to be regarded as standard; SI unit conversions are shown in parentheses.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 9.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
149 条记录,每页 15 条,当前第 1 / 10 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页