微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 This test method can be used to determine in-place permeability of synthetic turf playing field systems, playing field systems with pad and or premolded drainage boards, playing field systems with premolded panel base systems, porous and non porous pavement systems in order to confirm compliance with design specifications and or evaluate existing as-built conditions. The simplicity of the test method, the quickness of the procedure, and the limited requirement for special tools and apparatus’ makes this ideal for performing a large quantity of tests over a large area such as a sports field.5.2 Synthetic turf field systems tend to drain under several flow regimes. The first flow regime is surface flow where water travels across the surface from typically higher elevations to lower elevations. The second flow regime is flow through the turf surface and base system. The third flow regime is lateral flow, which has two parts. Lateral flow within the section of the turf surface and lateral flow within the pre-molded drainage board, porous pavement and or base stone system below the turf. These are depicted diagrammatically in Fig. 1.FIG. 1 Basic Flow Regime Diagram5.3 This test method can provide owners, designers and turf system builders with a clear indication of actual in-field permeability flow rates with limited effect of lateral flow through base systems and no effect from head pressure.5.4 This test method can be used to determine the effectiveness of treatments intended to reduce the effect of hydrophobicity which has been known to decrease the permeability of some synthetic turf infill materials and components.5.5 The observable performance of the test method enables one to determine permeability by both a quantitative and qualitative measure.1.1 This test method may be used to determine the permeability rate of synthetic turf playing field systems, playing field systems with pad or premolded drainage boards, or both, playing field systems with premolded panel base systems, porous and non porous pavement systems, or base stone systems in the field, or a combination thereof, by non-confined area flood test method. This system is suitable for use on the finish synthetic turf playing surface and on the stone base system below the playing system.1.2 This test method is applicable for synthetic turf playing field systems and stone bases where system is designed for permeability through the synthetic turf surface and or through a base stone surface. It is also suitable for synthetic turf playing systems that are directly underlined with resilient and nonresilient pre-molded drainage boards systems and porous pavement base systems. The method tests a larger surface area than confined ring test methods and decreases the effect lateral flow within the surface and or stone base system due to the large increase in the ratio of test surface area to the synthetic turf playing system and stone base system thickness. The method is intended to more accurately mimic natural storm flow conditions by eliminating the effect of head pressure created by the water column height which creates a pressure flow condition at the surface of the test area that does not exist naturally.1.3 This test method is intended for finish-graded and compacted stone or finished surfaces that are installed with cross-slope gradients of less than 2.0 % or under conditions where the effect of cross-slope is mitigated by high system permeability. High sloping systems tend to have high sloping base systems which may impact results due to increases in the lateral flow within the section caused increased hydraulic energy caused by larger slopes.1.4 This test method is not applicable for conditions or locations in-which surface flow, due to high surface cross-slope or proximity, carries water flow from the test site to surface and subsurface drainage trenches or structures.1.5 Further, this test method may be impacted if preformed directly after a significant rainfall event in cases where the downstream capacity of the receiving drainage system is taxed to the extent that water backs up in the downstream system.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a means for obtaining useful in-service fluid analysis properties in the field. It is not to be confused with laboratory or portable FTIR devices which provide measurements per the existing Test Methods listed in 4.1.1.1. Each of these monitored properties has been shown over time to indicate either contamination in the fluid system or a particular breakdown modality of the fluid, which is critical information to assess the health of the fluid as well as the machinery. By utilizing the field device, it is possible for those operating machinery, in locations and situations where it is not practical to gather a sample for the laboratory, to obtain quality in-service fluid analysis. This may be due to the need to have an analysis done in real-time, on-the-spot to maximize the operational hours of equipment, or to have the analysis performed at a location where no laboratory analysis is available.1.1 This test method describes the use of a grating spectrometer to analyze properties of an in-service fluid sample which are indicative of the status of that fluid and related machinery.1.2 This test method provides a means for the assessment of in-service fluid properties using infrared spectroscopy. It describes a methodology for sampling, performing analysis, and providing key in-service fluid properties with a self-contained unit that is meant for field use. It provides analysis of in-service fluids at any stage of their useful life, including newly utilized fluid.1.3 In particular, these key in-service fluid properties include oxidation, nitration, sulfation, soot, and antiwear additives. They are applicable for hydrocarbon type (API Group I-IV) fluids from machinery lubricants, including reciprocating engine oils, turbine oils, hydraulic oils, and gear oils.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4.1 Exception—The unit for wavenumbers is in cm-1.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This standard defines communication modes for Near Field Communication Interface and Protocol (NFCIP 1) using inductive coupled devices operating at the centre frequency of 13,56 MHz for interconnection of computer peripherals. It also defines both the Active and the Passive communication modes of Near Field Communication Interface and Protocol (NFCIP-1) to realize a communication network using Near Field Communication devices for networked products and also for consumer equipment. This standard specifies, in particular, modulation schemes, codings, transfer speeds, and frame format of the RF interface, as well as initialization schemes and conditions required for data collision control during initialization. It also defines a transport protocol including protocol activation and data exchange methods.

定价: 910元 / 折扣价: 774

在线阅读 收 藏

定价: 1138元 / 折扣价: 968

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 2048元 / 折扣价: 1741

在线阅读 收 藏

ISO/IEC 18092, ISO/IEC 14443 and ISO/IEC 15693 specify the radio frequency signal interface, initialization, anti-collision and protocols for wireless interconnection of closely coupled devices and access to contactless integrated circuit cards operating at 13,56 MHz. This Standard specifies the communication mode selection mechanism, designed not to disturb any ongoing communication at 13,56 MHz, for devices implementing ISO/IEC 18092, ISO/IEC 14443 or ISO/IEC 15693. This Standard requires implementations to enter the selected communication mode as specified in the respective Standard. The communication mode specifications, however, are outside the scope of this Standard.

定价: 546元 / 折扣价: 465

在线阅读 收 藏
302 条记录,每页 15 条,当前第 2 / 21 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页