微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Dangerous goods (hazardous materials) regulations require performance tests to be conducted on packaging designs before being authorized for use. The regulations do not include standardized procedures for conducting performance tests and, because of this, may result in a non-uniform approach and differences in test results between testing facilities.4.2 The purpose of this guide is to provide guidance and to establish a set of common practices for conducting internal pressure tests on packagings subjected to UN certification testing or packagings required to meet pressure capability requirements.4.3 This guide provides additional information not in the regulations that will facilitate consistent testing. The information and guidance provided here are intended to meet or exceed the minimum regulatory requirements. For more information on the UN certification requirements, refer to Guide D4919. For pressure testing of IBC design types, reference Guide D8134.1.1 This guide is intended to provide a standardized method and a set of basic instructions for performing internal and hydrostatic pressure testing on packaging designs intended for shipping liquids in accordance with the United States Department of Transportation Title 49 Code of Federal Regulations (CFR) and the United Nations Recommendations on the Transport of Dangerous Goods (UN).1.2 This guide provides information to help clarify various terms used as part of the United Nations (UN) certification process that may assist in determining the applicable test.1.3 This guide provides the suggested minimum information that should be documented when conducting pressure testing.1.4 This guide provides information for recommended equipment and fittings for conducting pressure tests.1.5 This guide is based on the current information contained in 49 CFR, §173.27 and §178.605.1.6 When testing packaging designs intended for hazardous materials (dangerous goods), the user of this guide shall be trained in accordance with 49 CFR §172.700 and other applicable hazardous materials regulations such as the ICAO Technical Instructions, IMDG Code, and carrier rules such as the IATA Dangerous Goods Regulations.1.7 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 SGCs are used to produce asphalt mixture specimens in the laboratory to assess volumetric properties and predict pavement performance. In the fabrication of an SGC specimen in accordance with Test Method D6925, loose asphalt mixture is placed inside a metal mold, which is then placed into an SGC. A constant consolidation pressure is applied to the sample while the mold gyrates at a nominally constant angle (referred to as the internal angle of gyration) and rate. Consistency in the density of the asphalt specimens produced as measured by Test Method D2726/D2726M or D6752/D6752M is very important to the validity of the tests performed. Specimens of a consistent density are produced when an SGC maintains a constant pressure and a known constant internal angle of gyration during the compaction process.5.2 There are several manufacturers and models of SGC. Each model employs a unique method of setting, inducing, and maintaining the internal angle of gyration. Each model also employs a unique calibration system to measure the external angle of gyration. These existing calibration systems cannot be used universally on all of the different SGC models commercially available. Inconsistencies in asphalt specimens produced on different SGC models have been at least partially attributed to variations in the angle of gyration.5.3 This method describes instruments and processes that can be used to independently measure the internal angle of gyration of any manufacturer’s SGC model under simulated loading conditions. The external shape of the instrument chassis ensures that the points of physical contact between the mold end plates and the instrument occur at a fixed and known distance away from the axis of gyration. As a result, the vertical load is applied at these fixed points, creating tilting moments at each end of the mold.5.4 Unless otherwise specified, a tilting moment of 466.5 N-m shall be applied to the SGC by the instrument while making this measurement.NOTE 1: The quality of the results produced by this test method are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this test method are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.NOTE 2: A 466.5 N-m tilting moment corresponds to a 22 mm eccentric on the AFLS1 or a 21° cone angle on the DAVII-HMS with an applied load of 10603 N (600 kPa at a 150 mm diameter specimen setting).1.1 This test method covers the procedure for the measurement of the Superpave Gyratory Compactor (SGC) internal angle of gyration using an instrument capable of simulating loading conditions similar to those created by an asphalt mixture specimen.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. The value given in rotations per minute is provided for information regarding commonly used units.1.2.1 IEEE/ASTM SI 10, American National Standard for Metric Practice, offers guidance where use of decimal degrees for plane angles (versus radians) and revolutions per minute for rate of gyration (versus radians per second) is acceptable within the IEEE/ASTM SI 10 system when used on a minimal basis.1.3 The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The methane number (MN) is a measure of the resistance of the gaseous fuel to autoignition (knock) when used in an internal combustion engine. The relative merits of gaseous fuels from different sources and having different compositions can be compared readily on the basis of their methane numbers. Therefore, the calculated methane number (MNC) is used as a parameter for determining the suitability of a gaseous fuel for internal combustion engines in both mobile and stationary applications.1.1 This practice covers the method to determine the calculated methane number (MNC) of a gaseous fuel used in internal combustion engines. The basis for the method is a dynamic link library (DLL) suitable for running on computers with Microsoft Windows operating systems.1.2 This practice pertains to commercially available natural gas products that have been processed and are suitable for use in internal combustion engines. These fuels can be from traditional geological or renewable sources and include pipeline gas, compressed natural gas (CNG), liquefied natural gas, liquefied petroleum gas, and renewable natural gas as defined in Section 3.1.3 The calculation method within this practice is based on the MWM Method as defined in EN 16726, Annex A.2 The calculation method is an optimization algorithm that uses varying sequences of ternary and binary gas component tables generated from the composition of a gaseous fuel sample.3 Both the source code and a Microsoft Excel-based calculator are available for this method.1.4 This calculation method applies to gaseous fuels comprising of hydrocarbons from methane to hexane and greater (C6+); carbon monoxide; hydrogen; hydrogen sulfide; nitrogen; and carbon dioxide. The calculation method addresses pentanes (C5) and higher hydrocarbons and limits the individual volume fraction of C5 and C6+ to 3 % each and a combined total of 5 %. (See EN 16726, Annex A.) The calculation method is performed on a dry, oxygen-free basis.1.5 Units—The values stated in SI units are to be regarded as standard. Other units of measurement included in this standard are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Stresses in coatings arise as a result of their shrinkage or expansion if expected movements are prevented by coating adhesion to its substrate.5.2 There are several causes leading to arrival of stresses in the coatings: film formation (cross-linking, solvent evaporation, etc.); differences in thermal expansion coefficients between coating and substrate; humidity and water absorption; environmental effects (ultraviolet radiation, temperature and humidity), and others.5.3 Knowledge of the internal stresses in coatings is very important because they may effect coating performance and service life. If the internal stress exceeds the tensile strength of the film, cracks are formed. If stress exceeds adhesion between coating and substrate, it will reduce adhesion and can lead to delamination of coatings. Quantitative information about stresses in coatings can be useful in coating formulation and recommendations for their application and use.5.4 This method has been found useful for air-dry industrial organic coatings but the applicability has not yet been assessed for thin coatings (thickness <0.0254 mm (.001 in.), for powder and thermally-cured coatings.1.1 This test method covers the procedure for measurements of internal stresses in organic coatings by using the cantilever (beam) method.1.2 This method is appropriate for the coatings for which the modulus of elasticity of substrate (Es) is significantly greater than the modulus of elasticity of coating (Ec) and for which the thickness of substrate is significantly greater than thickness of coating (see Note 7 and Note 8).1.3 The stress values are limited by the adhesion values of coating to the substrate and by the tensile strength of the coating, or both.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

These test methods provide a measure of the moisture resistance of cellulosic-based fiber and particle panels (for example, medium-density fiberboard (MDF), particleboard, and hardboard). This test methodology can be used to assess the thickness swelling and bond integrity characteristics of panels engineered for interior end-use applications involving exposure to cyclic temperatures and intermittent wetting environments.1.1 These test methods provide a measure of the moisture resistance of cellulosic-based fiber and particle panels (for example, medium-density fiberboard (MDF), particleboard, and hardboard). Resistance to moisture changes is measured by dimensional and internal bond changes and does not refer to decay/mold resistance or other performance aspects.1.2 These test methods do not address structural properties or performance following moisture exposure. Panels are subjected to repeated cycles of water submersion and oven drying. After three cycles, the test specimens are tested for thickness swelling (TS) and internal bond (IB) strength.    1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The data obtained by this test method are useful for establishing stress versus failure time relationships in a controlled environment from which the hydrostatic design basis for plastic pipe materials can be computed. (Refer to Test Method D2837 and Practice D2992.)5.2 In order to determine how plastics will perform as pipe, it is necessary to establish the stress-failure time relationships for pipe over 2 or more logarithmic decades of time (hours) in a controlled environment. Because of the nature of the test and specimens employed, no single line can adequately represent the data, and therefore the confidence limits should be established.NOTE 2: Some materials may exhibit a nonlinear relationship between log-stress and log-failure time, usually at short failure times. In such cases, the 105-hour stress value computed on the basis of short-term test data may be significantly different than the value obtained when a distribution of data points in accordance with Test Method D2837 is evaluated. However, these data may still be useful for quality control or other applications, provided correlation with long-term data has been established.5.3 The factors that affect creep and long-term strength behavior of plastic pipe are not completely known at this time. This procedure takes into account those factors that are known to have important influences and provides a tool for investigating others.5.4 Creep, or nonrecoverable deformation for pipe made of some plastics, is as important as actual leakage in deciding whether or not a pipe has failed. Specimens that exhibit localized ballooning, however, may lead to erroneous interpretation of the creep results unless a method of determining creep is established that precludes such a possibility. Circumferential measurements at two or three selected positions on a specimen may not be adequate.5.5 Great care must be used to ensure that specimens are representative of the pipe under evaluation. Departure from this assumption may introduce discrepancies as great as, if not greater than, those due to departure from details of procedure outlined in this test method.1.1 This test method covers the determination of the time-to-failure of both thermoplastic and reinforced thermosetting/resin pipe under constant internal pressure.1.2 This test method provides a method of characterizing plastics in the form of pipe under the conditions prescribed.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

4.1 Absorbable devices are intended to degrade and absorb over time once they are implanted into the body. This makes a removal operation unnecessary, which is especially advantageous for pediatric patients.4.2 While the polymer degrades due to hydrolytic reaction with the environment, the mechanical performance of the device also deteriorates. The key to developing mechanically effective fracture fixation systems based on absorbable devices is to provide an adequate level of fixation strength and stiffness for a time frame that exceeds that expected for fracture healing. Once the fracture is healed, the device can be completely absorbed by the body. The biological performance of the device, particularly for application at a bony site, may be enhanced by incorporation of bioactive fillers in the polymer.4.3 Absorbable devices will be tested using test methods that are similar to those used to evaluate conventional metallic devices. The pre-test conditioning requirements, handling requirements, and time-dependent mechanical property evaluations for absorbable devices shall be considered.4.4 This specification and accompanying test methods are intended to complement the more general considerations for the assessment of absorbable polymeric implants that are described within Guide F2902.FIG. 1 Screw Parameters1.1 This specification and test methods cover the mechanical characterization of plates and screws for orthopedic internal fixation. Covered devices are fabricated from one or more hydrolytically degradable polymer (from this point on referred to as “absorbable”) resins or resin composites.1.2 This specification establishes a common terminology to describe the size and other physical characteristics of absorbable implants and performance definitions related to the performance of absorbable devices.1.3 This specification establishes standard test methods to consistently measure performance-related mechanical characteristics of absorbable devices when tested under defined conditions of pretreatment, temperature, humidity, and testing machine speed.1.4 This specification may not be appropriate for all absorbable devices, especially those that possess limited hydrolytic susceptibility and degrade in vivo primarily through enzymatic action. The user is cautioned to consider the appropriateness of the standard in view of the particular absorbable device and its potential application.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice is for use by designers and specifiers, regulatory agencies, owners, contractors, and inspection organizations who are involved in rehabilitation of pressurized piping systems.1.1 This standard is intended to establish the minimum criteria necessary for use of a mechanically mixed, blended, epoxy barrier coating (AWWA Class I) that is applied to the interior of 1/2 in. (12.7 mm) to 36 in. (914.4 mm) metallic pipe or tube used in pressurized piping systems for corrosion protection and to improve flow rates. There is no restriction as to the developed length of the piping system other than the method of application (“blow through”, spin cast or hand sprayed) and the characteristics of the epoxy coating being applied but the manufacturer’s engineer shall be consulted for any limitations associated with this product, process and its application for the end user.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Dangerous goods (hazardous materials) regulations require performance tests to be conducted on packaging or IBC designs before being authorized for use. The regulations do not include standardized procedures for conducting performance tests and, because of this, may result in a non-uniform approach and differences in test results between testing facilities.4.2 The purpose of this standard is to provide guidance and to establish a set of common practices for conducting hydrostatic pressure tests on IBC designs subjected to UN certification testing.4.3 Intermediate bulk container designs are required to be tested in a sequence. This guide focuses on conducting the hydrostatic pressure test, which is preceded in the test sequence by the leakproofness test. The fittings and adaptors applied to the container for the hydrostatic pressure test may also be used for the leakproofness test.1.1 This guide is intended to provide a standardized method and a set of basic instructions for performing hydrostatic pressure testing on Intermediate Bulk Containers (IBCs) designs as required by the United States Department of Transportation Title 49 Code of Federal Regulations (CFR) and the United Nations Recommendations on the Transport of Dangerous Goods (UN).1.2 This guide focuses on composite and rigid plastic IBCs and is suitable for testing IBCs of any design or material type.1.3 This guide provides information to help clarify various terms used as part of the United Nations (UN) certification process that may assist in determining the applicable test.1.4 This guide provides the suggested minimum information that should be documented when conducting pressure testing.1.5 This guide provides information for recommended equipment and fittings for conducting pressure tests.1.6 This guide is based on the current information contained in 49 CFR 178.814.1.7 When testing packaging designs intended for hazardous materials (dangerous goods), the user of this guide shall be trained in accordance with 49 CFR 172.700 and other applicable hazardous materials regulations such as the International Civil Aviation Organization (ICAO) Technical Instructions for the Safe Transport of Dangerous Goods by Air, the International Maritime Dangerous Goods Code (IMDG Code), and carrier rules such as the International Air Transport Association (IATA) Dangerous Goods Regulations.1.8 Units—”The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this guide.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
72 条记录,每页 15 条,当前第 2 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页