微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The transport of any suspended solids or corrosion products from the preboiler cycle has been shown to be detrimental to all types of steam generating equipment. Corrosion product transport as low as 10 ppb can have significant impact on steam generators performance.5.2 Deposited corrosion products on pressurized water reactor (PWR) steam generator tubes can reduce heat transfer, and, if the deposit is sufficiently thick, can provide a local area for impurities in the bulk water to concentrate, resulting in a corrosive environment. In boiling water reactor (BWR) plants, the transport of corrosion products can cause fuel failure, out of core radiation problems from activation reactions, and other material related problems.5.3 In fossil plants, the transport of corrosion products can reduce heat transfer in the boilers leading to tube failures from overheating. The removal of these corrosion products by chemical cleaning is expensive and potentially harmful to the boiler tubes.5.4 Normally, grab samples are not sensitive enough to detect changes in the level of corrosion product transport. Also, system transients may be missed by only taking grab samples. An integrated sample over time will increase the sensitivity for detecting the corrosion products and provide a better understanding of the total corrosion product transport to steam generators.1.1 This practice is applicable for sampling condensed steam or water, such as boiler feedwater, for the collection of suspended solids and (optional) ionic solids using a 0.45-μm membrane filter (suspended solids) and ion exchange media (ionic solids). As the major suspended component found in most boiler feedwaters is some form of corrosion product from the preboiler system, the device used for this practice is commonly called a corrosion product sampler.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification describes the required properties and test methods for high-solids content, cold liquid-applied elastomeric membrane with integral wearing surface for waterproofing building decks not subject to hydrostatic pressure. This specification does not include specific requirements for skid resistance or fire retardance, although both may be important in specific uses. The properties to which the materials will be tested upon for conformance are as follows: weight loss of base coat; low temperature crack bridging; adhesion-in-peel to cement mortar and plywood substrates after water immersion; chemical resistance after water, ethylene glycol, and mineral spirits exposure; weathering resistance, recovery from elongation, tensile retention, and elongation retention; abrasion resistance; and stability.1.1 This specification describes the required properties and test methods for a cold liquid-applied elastomeric membrane for waterproofing building decks not subject to hydrostatic pressure. The specification applies only to a membrane system that has an integral wearing surface. This specification does not include specific requirements for skid resistance or fire retardance, although both may be important in specific uses.1.2 The type of membrane system described in this specification is used for pedestrian and vehicular traffic and in high-abrasion applications. The membrane may be single- or multi-component, and may consist of one or more coats (for example base coat, top coat, etc.). The coat(s) may be built to the desired thickness in one or more applications. One coat (base coat) provides the primary waterproofing function and normally comprises the major amount of organic material in the membrane. The function of the top coat(s) is to resist wear and weather. Aggregate may be used as a component of the membrane system, as all or part of a course, to increase wear and skid resistance.1.3 The committee with jurisdiction over this standard is not aware of any comparable standards published by other organizations.1.4 Test methods in this specification require a minimum 0.5-mm [0.020-in.] base coat dry film thickness. Actual thickness required for a particular application and the use of aggregate in topcoats shall be established by the membrane manufacturer.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 The following safety hazards caveat pertains only to the test method portion, Section 5, of this specification: This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification describes the required properties and test methods for cold liquid-applied elastomeric-type membranes for waterproofing building decks and walls subject to hydrostatic pressure in building areas to be occupied by personnel, vehicles, or equipment. This specification applies only to a membrane system that will be covered with a separate wearing course, traffic course, or backfill. After application by spreading or spraying, the membrane materials shall cure to form an elastomeric film capable of maintaining a seal against liquid water. Materials shall undergo appropriate tests and conform accordingly to the following requirements: hardness; weight loss; nonvolatile matter content; low temperature crack bridging; film thickness; adhesion-in-peel after water immersion; extensibility after heat aging; and storage stability.1.1 This specification describes the required properties and test methods for a cold liquid-applied elastomeric-type membrane, one- or two-component, for waterproofing building decks and walls subject to hydrostatic pressure in building areas to be occupied by personnel, vehicles, or equipment. This specification applies only to a membrane system that will be covered with a separate wearing course, traffic course, or backfill.NOTE 1: See Guides C898/C898M and C1471/C1471M for proper application of membrane.1.2 There are no ISO standards similar or equivalent to this ASTM standard.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 A large number of industrial processes involve transfer and feeding of bulk solids, and the ability of such materials to flow in a controlled manner during these operations is critical to product quality.5.2 Direct shear cells are among the most important methods for measuring the flow properties of bulk solids in industrial applications for bulk solids handling.5.3 Direct shear cells have many advantages over simpler methods of measuring bulk solids flow properties, but their operation is more complex and the procedures for their use must be carefully controlled to produce accurate and reproducible data.5.4 The three most popular direct shear cell types are: Translational (D6128), Annular (D6773), and Rotational (D6682 and D7891).5.5 From shear cell data, a wide variety of parameters can be obtained, including the yield locus representing the shear stress to normal stress relationship at incipient flow, angle of internal friction, unconfined yield strength, cohesion, and a variety of related parameters such as the flow function.5.6 In addition, these three direct shear cells can be set up with wall coupons to measure wall friction.5.7 When the shear cell data are combined with unconfined yield strength, wall friction data, and bulk density data, they can be used for bin and hopper evaluation and design.1.1 This guide covers theory and principles for obtaining reliable and accurate bulk solids flow data using a direct shear cell. It includes characteristics and limitations of the three most popular direct shear cell types: Translational (D6128), Annular (D6773), and Rotational (D6682 and D7891).1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measure are included in this standard.1.3 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.4 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test methods A and B are used to estimate the permanganate natural oxidant demand exerted by the soil or aquifer solids by determining the quantity of potassium permanganate that is consumed by naturally occurring species as a function of time. Test Method C is used to estimate the permanganate total oxidant demand exerted by soil, aquifer solids, chemical contaminants or any other reduced species by determining the quantity of potassium permanganate that is consumed by all components of the bulk aquifer as a function of time. Typically, the measurement of oxidant demand is used to screen potential sites for in situ chemical oxidation (ISCO) with permanganate (Test Methods A and C) and provide information to aid in the design of remediation systems (Test Methods B and C).5.2 While some oxidizable species react relatively quickly (that is, days to weeks), others react more slower (weeks to months). Consequently, the PNODt is expected to be some fraction of the PNODmax.5.3 For ISCO injection applications, the PNOD may overestimate the demand exerted due to mass transport related issues. For soil blending applications, the PNOD is a more accurate measure of the demand exerted due to better mass to oxidant contact.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/and so forth.1.1 These test methods cover the estimation of the permanganate natural oxidant demand (PNOD) through the determination of the quantity of potassium permanganate (KMnO4) that organic matter and other naturally occurring oxidizable species present in soil or aquifer solids will consume under specified conditions as a function of time. Oxidizable species may include organic constituents and oxidizable inorganic ions, such as ferrous iron and sulfides. The following test methods are included:Test Method A—48-hour Permanganate Natural Oxidant DemandTest Method B—Permanganate Natural Oxidant Demand KineticsTest Method C—Permanganate Total Oxidant Demand1.2 These test methods are limited by the reagents employed to a permanganate natural oxidant demand (PNOD) of 40 g KMnO4 per kg soil or aquifer solids after a period of 48 hours (Methods A and C) or two weeks (Method B).1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to interpret the results of the data. It is the responsibility of the user of this standard to interpret the results obtained and to determine the applicability of these results prior to use.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 These procedures can be used to generate microplastic particles as a simulation of microplastic particles found in the natural environment. Suitable uses may include evaluation of microplastic detection and imaging methods. Use of reference samples will support estimation of ambient and flux concentrations in drinking water, wastewater and natural environments, investigations of microplastic particle degradation, and ingestion of microplastics by animals in the contexts of food safety and human health risk assessment.1.1 This practice describes manufacturing methods to create microplastic particles from pellets of common polymers and the preparation of microplastic reference samples for calibration and proficiency evaluation of microplastic collection practices, preparation practices, and identification methods.1.2 This practice does not describe methods for controlling or characterizing the shapes of particles. The procedures have been observed to yield irregularly shaped particles, the use of which in many cases will serve to remove the analytical bias inherent with using distinctive manufactured spherical beads. Other procedures should be used if spheres or elongated fibers are desired.1.3 This practice does not describe handling procedures for waste generated when executing the procedures described herein. It is the responsibility of the user of this practice to follow applicable laws and regulations when manufacturing and disposing of microplastic particles, and to establish appropriate procedures to minimize the amount of waste generated.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM C1603-23 Standard Test Method for Measurement of Solids in Water Active 发布日期 :  1970-01-01 实施日期 : 

4.1 This test method is used to determine the solids content of mixing water used to produce concrete when one or more of the water sources is wash water from concrete production operations or water that contains solids when batched as mixing water in concrete.4.2 The test method provides a means to determine the relationship between the density and solids content of water for compliance with solids content limits of mixing water such as in Specification C1602/C1602M.4.3 During production of concrete, the water property measured is its density, which can then be used to estimate the solids content from procedures described in this test method.4.4 To develop a correlation between the density and solids content of water, water samples should be tested that cover the range of solids concentrations anticipated during production.1.1 This test method covers the measurement of the solids content in water for use as mixing water in ready-mixed concrete and the measurement of its density. Solids content is expressed in terms of parts per million (ppm) or in terms of percent by mass of the water sample.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method is useful in determining the total solids and water in analytical solutions.1.1 This test method is intended for use in determining the total solids and water in extracts of vegetable tanning materials. The test method is applicable to solutions of liquid, solid, pasty, and powdered extracts, and to extracts of raw or spent materials.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
121 条记录,每页 15 条,当前第 2 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页