微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This test method covers procedures for the performance of constant amplitude fatigue testing of metallic staples used in internal fixation of the musculoskeletal system. This test method may be used when testing in air at ambient temperature or in an aqueous or physiological solution. 1.2 The values stated in SI units are to be regarded as the standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0

在线阅读 收 藏

1.1 This test method covers the determination of the effect of repetitions of the same magnitude of flexural stress on plastics by fixed-cantilever type testing machines, designed to produce a constant-amplitude-of-force on the test specimen each cycle. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0

在线阅读 收 藏

Permittivity:5.1.1 Polyethylene and Materials of Permittivity Within 0.1 of That of Polyethylene—Since the permittivity of benzene or 1-cSt silicone fluid is very close to that of polyethylene, these fluids are recommended for highly accurate and precise testing of polyethylene or other materials with permittivity close to that of polyethylene. These aspects of the test method make it a suitable tool to determine batch-to-batch uniformity of a polyethylene compound to meet precise requirements of high capacitance uniformity and capacitance stability in electronic apparatus. It also serves as a means to detect impurities, as well as changes resulting from prolonged exposure to high humidity, water immersion, weathering, aging, processing treatments, and exposure to radiation.5.1.2 Other Materials—This test method provides advantages for routine testing of those materials that have a poorer match in permittivity between the liquids mentioned in 5.1.1 and the specimen. These advantages include, but are not limited to, a reduction of the probability of errors caused by imprecise thickness data and the ease with which tests can be performed. Correction factors can be calculated to account for the bias introduced by the permittivity mismatch. The two liquids mentioned in 5.1.1 are not the only liquids having known values of dielectric properties and are known to be compatible with a solid electrical insulating material.Dissipation Factor—Normally, polyethylene has a very low dissipation factor, and a test specimen exhibiting an abnormally high dissipation factor would be suspected of containing impurities or being contaminated. The reproducibility of dissipation factor by this test method is somewhat better than that obtainable with the more conventional methods, but is limited by the sensitivity of commercially available measuring apparatus.1.1 These test methods provide techniques for the determination of the relative (Note 1) permittivity and the dissipation factor of solid insulating materials by fluid (Note 2) displacement.Note 1—In common usage, the word "relative" is frequently dropped.Note 2—The word "fluid" is a commonly used synonym for "liquid" and yet a gas is also a fluid. In this standard, the word "fluid" is used to show that liquid is not all that is meant.1.2 Test Method A is especially suited to the precise measurements on polyethylene sheeting at 23°C and at frequencies between 1 kHz and 1 MHz. It may also be used at other frequencies and temperatures to make measurements on other materials in sheet form.1.3 Test Method B is limited to the frequency range of available guarded bridges. It is especially suited to measurements on very thin films since it does not require determination of the thickness of the specimen yet it provides an estimate of the thickness of thin films that is more accurate and precise than thickness measurements obtained by other means.1.4 Test Method B is also useful for measurements of polymer sheeting up to 2-mm thickness.1.5 These test methods permit calculation of the dissipation factor of the specimens tested.1.6 The values stated in SI units are to be regarded as the standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific precautionary statement, see 7.2.

定价: 0

在线阅读 收 藏

5.1 This method is used to determine the force required to rupture textile fabric by forcing a steel ball through the fabric with a constant-rate-of-extension tensile tester.5.2 This is a new method and therefore the history of data is very small, however the agreement of within- laboratory data suggest this method may be considered for acceptance testing of commercial shipments with caution.5.2.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative test should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, samples used for such comparative test should be as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. Other fabrics with established test values may also be used for these comparative tests. The test results from the laboratories involved should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If bias is found, either its cause must be found and corrected, or future test results for that fabric must be adjusted in consideration of the known bias.1.1 This test method describes the measurement for bursting strength of woven and knitted textiles taken from rolls of fabric or fabric taken from garments.NOTE 1: For the measurement of bursting strength with a hydraulic or pneumatic machine, refer to Test Method D3786. For the measurement of the bursting strength by means of a ball burst mechanism, refer to Test Method D3787NOTE 2: Constant Rate of Traverse (CRT) machines and Constant Rate of Extension (CRE) machines have been shown to provide different results. When using a CRT device, refer to Test Method D3787.1.2 The values stated in either SI units or U.S. customary units are to be regarded as standard, but must be used independently of each other. The U.S. customary units may be approximate.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0

在线阅读 收 藏

The efficiency of light-emitting diodes is known to vary with the carrier density of the starting material. This procedure provides a technique to prepare specimens in which the Hall carrier density can be measured in a region typical of that in which devices are fabricated. This quantity, which is related to the carrier density, can be used directly as a quality control parameter.Mobility is a function of a number of parameters of a semiconductor, including ionized impurity density, compensation, and lattice defects, some or all of which may be relatable to material quality as reflected in device quality. Use of this procedure makes the measurement of the mobility of the constant composition region possible.Since in GaAs (1−x)Px with x near 0.38, as is most often used for light-emitting diodes, the direct (000 or Γ) minimum and the indirect (100 or X) minima are within a few millielectronvolts in energy of each other, both are populated with current-carrying electrons. The mobility in the two bands is significantly different, and the relative population of the two is dependent upon the precise composition (x value), doping level, and temperature. Therefore, both Hall coefficient and Hall mobility must be interpreted with care (2,3). In particular, a measurement of Hall carrier density will not agree with a carrier density measurement on the same specimen made by capacitance-voltage techniques. Nevertheless, if the intent of measuring the carrier density of purchased or grown specimens is to find those which are optimum for diode fabrication, Hall measurements can be of value because a curve of efficiency versus Hall carrier density can be derived for the device process to be used based upon data taken on specimens prepared in accordance with this procedure.1.1 This practice covers a procedure to be followed to free the constant composition region of epitaxially grown gallium arsenide phosphide, GaAs(1x)Px, from the substrate and graded region on which it was grown in order to measure the electrical properties of only the constant composition region, which is typically 30 to 100 m thick. It also sets forth two alternative procedures to be followed to make electrical contact to the specimen.1.2 It is intended that this practice be used in conjunction with Test Methods F 76.1.3 The specific parameters set forth in this recommended practice are appropriate for GaAs0. 62P0. 38, but they can be applied, with changes in etch times, to material with other compositions.1.4 This practice does not deal with making or interpreting the Hall measurement on a specimen prepared as described herein, other than to point out the existence and possible effects due to the distribution of the free carriers among the two conduction band minima.1.5 This practice can also be followed in the preparation of specimens of the constant composition region for light absorption measurements or for mass or emission spectrometric analysis.1.6 This practice becomes increasingly difficult to apply as specimens become thinner.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For hazard statement, see Section 9 and 11.9.2.4.

定价: 0

在线阅读 收 藏

The data obtained by this test method are useful for establishing pressure, or hoop stress where applicable, versus failure-time relationships, under independently controlled internal and external environments that simulate actual anticipated product end-use conditions, from which the design basis (DB) for piping products or materials, or both, can be determined. (Refer to Test Method D2837 and Practice D2992, and Appendix X1 of this test method.)Note 3—Reference to design basis (DB) in this test method refers to the hydrostatic design basis (HDB) for material in straight hollow cylindrical shapes where hoop stress can be easily calculated, or is based on applied pressure design basis (PDB) for complex-shaped products or systems where complex stress fields seriously prohibit the use of hoop stress.In order to characterize plastics as piping products, it is necessary to establish the stress-to-rupture-time, or pressure-to-rupture-time relationships over two or more logarithmic decades of time (hours) within controlled environmental parameters. Because of the nature of the test and specimens employed, no single line can adequately represent the data. Therefore, the confidence limits should be established.Results obtained at one set of environmental conditions should not be used for other conditions, except that higher temperature data can be used for a design basis assignment for lower application temperatures, provided that it can be demonstrated that the application conditions present a less stringent environment. The design basis should be determined for each specific plastic material and each different set of environmental constraints. Design and processing can significantly affect the long-term performance of piping products, and therefore should be taken into consideration during any evaluation (see Appendix X2).Specimens used must be representative of the piping product or material under evaluation (see Appendix X2).1.1 This test method covers the determination of the time-to-failure of plastic piping products under constant internal pressure and flow.1.2 This test method provides a method of characterizing plastics in the form of pipe, components, and systems under any reasonable combination of internal and external temperatures and environments, under the procedures described.1.3 This test method can be used to characterize the tested plastic materials or products, or both, on the basis of pressure-, or stress-rupture data developed under the conditions prescribed.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0

在线阅读 收 藏

5.1 The ID and DCN values determined by this test method can provide a measure of the ignition characteristics of diesel fuel oil in compression ignition engines.5.2 This test can be used by engine manufacturers, petroleum refiners and marketers, and in commerce as a specification aid to relate or match fuels and engines.5.3 The relationship of diesel fuel oil DCN determinations to the performance of full-scale, variable-speed, variable-load diesel engines is not completely understood.5.4 This test may be applied to non-conventional fuels. It is recognized that the performance of non-conventional fuels in full-scale engines is not completely understood. The user is therefore cautioned to investigate the suitability of ignition characteristic measurements for predicting performance in full-scale engines for these types of fuels.5.5 This test determines ignition characteristics and requires a sample of approximately 220 mL and a test time of approximately 20 min on a fit-for-use instrument.1.1 This test method covers the quantitative determination of the ignition characteristics of conventional diesel fuel oils, diesel fuel oils containing cetane number improver additives, and is applicable to products typical of Specification D975, Grades No. 1-D and 2-D regular and low-sulfur diesel fuel oils, European standard EN 590, and Canadian standards CAN/CGSB-3.517-2000 and CAN/CGSB 3.6-2000. The test method may also be applied to the quantitative determination of the ignition characteristics of blends of fuel oils containing biodiesel material, and diesel fuel oil blending components.1.2 This test method measures the ignition delay and utilizes a constant volume combustion chamber with direct fuel injection into heated, compressed air. An equation converts an ignition delay determination to a derived cetane number (DCN).1.3 This test method covers the ignition delay range from a minimum value of 35.0 DCN (ignition delay of 4.89 ms) to a maximum value of 59.6 DCN (ignition delay of 2.87 ms). The average DCN result for each sample in the ILS ranged from 37.29 (average ignition delay of 4.5894 ms) to 56.517 (average ignition delay of 3.0281 ms).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0

在线阅读 收 藏
DIN 271 Tangential Keys and Tangential Keyways for Constant Loads 废止 发布日期 :  2001-09-01 实施日期 : 

定价: 208

定价: 191

在线阅读 收 藏
DIN 258 Taper Pins with Thread Ends and Constant Taper Lengths 废止 发布日期 :  2001-02-01 实施日期 : 

定价: 191

237 条记录,每页 15 条,当前第 13 / 16 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页