微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The primary purpose of the PMA test is to determine the presence of mechanical damage, wear through, and other gross defects in the coating. Most metallic coatings are intended to be protective, and the presence of gross defects indicates a serious reduction of such protection.5.2 The protection afforded by well applied coatings may be diminished by improper handling following plating or as a result of wear or mechanical damage during testing or while in service. The PMA test can serve to indicate the existence of such damage.5.3 This test is used to detect underplate and substrate metal exposed through normal wear during relative motions (mating of electrical contacts) or through mechanical damage. As such, it is a sensitive pass/fail test and, if properly performed, will rapidly detect wear through to base metals or scratches that enter the base metal layers.5.4 This test is relatively insensitive to small pores. It is not designed to be a general porosity test and shall not be used as such. The detection of pores will depend upon their sizes and the length of time that the reagent remains a liquid.5.5 This test cannot distinguish degrees of wear through or whether the wear through is to nickel or copper. Once base metal is exposed, the colored molybdenum complex is formed. While relatively small area defects (compared to the area of the droplet) may be seen at the bottom of the drop as tiny colored regions immediately after applying the PMA, any larger areas of exposed base metal will cause the entire droplet to turn dark instantly.5.6 The PMA test also detects mechanical damage that exposes underplate and substrate metal. Such damage may occur in any postplating operation or even at the end of the plating operation. It can often occur in assembly operations where plated parts are assembled into larger units by mechanical equipment.5.7 The PMA test identifies the locations of exposed base metal. The extent and location of these exposed areas may or may not be detrimental to performance. The PMA test is not recommended for predictions of product performance, nor is it intended to simulate field failure mechanisms. For such contact performance evaluations, an environmental test known to simulate actual failure mechanisms should be used.5.8 The PMA test is primarily intended for the evaluation of individual samples rather than large sample lots, since evaluations are normally carried out one at a time under the microscope (see Section 10).5.9 This test is destructive. Any parts exposed to the PMA test shall not be placed in service.1.1 This test standard covers equipment and methods for using phosphomolybdic acid (PMA) to detect gross defects and mechanical damage including wear through in metallic coatings of gold, silver, or palladium. These metals comprise the topmost metallic layers over substrates of nickel, copper, or copper alloys.1.2 Recent reviews of porosity testing, which include those for gross defects, and testing methods can be found in the literature.2, 3 An ASTM guide to the selection of porosity and gross defect tests for electrodeposits and related metallic coatings is available as Guide B765. Other related porosity and gross defects test standards are Test Methods B735, B741, B798, B799, B809, and B866, Specifications B488, B679,and B689.1.3 The values stated in SI units are the preferred units. Those in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The purpose of this test method is to define a procedure for testing components being considered for installation into a high-purity gas distribution system. Application of this test method is expected to yield comparable data among components tested for purposes of qualification for this installation.1.1 This test method covers the testing of interior surfaces of components such as tubing, fittings, and valves for surface morphology.1.2 This test method applies to all surfaces of tubing, connectors, regulators, valves, and any metal component, regardless of size.1.3 Limitations: 1.3.1 This methodology assumes a SEM operator skill level typically achieved over a 12-month period.1.3.2 This test method shall be limited to the assessment of pits, stringer, tears, grooves, scratches, inclusions, stepped grain boundaries, and other surface anomalies. However, stains and particles that may be produced during specimen preparation should be excluded in the assessment of anomalies.1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.Specific hazard statements are given in Section 6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The metallurgical properties of materials used to manufacture absorbable metallic implants can influence biological reactions and mechanical interaction with soft and hard tissue in the body. This standard guide describes a suggested material characterization scheme for absorbable metallic materials to ensure reproducibility of properties prior to their manufacture into medical implants.1.1 This guidance document provides metallurgical characterization information that may be beneficial in the evaluation of absorbable metallic materials intended for medical implant applications. This guide is primarily intended for absorbable metallic materials that undergo further processing into a fabricated final device. Therefore, this standard does not require assessments that are more appropriately conducted on the final device, such as biological evaluation. However, a few relevant standards for finished implant devices are included for information purposes.1.2 The purpose of this guide is to identify appropriate test methods and relevant medical product standards that can be used to develop future standards for new or modified absorbable metallic materials.1.3 This guide is not intended to cover other major classes of absorbable materials such as polymers, ceramics, composites, and tissue-engineered materials.1.4 This standard guide is focused on the chemical, physical, microstructural, and mechanical properties plus inspection guidelines for metallic materials that are used for medical implants designed to be absorbed in the body over a period of time. This guide focuses on material characterizations and does not address device specific mechanical testing that may be necessary to determine safety and functionality of the implant.1.5 Compliance with materials specifications developed in accordance with this standard may not necessarily result in a material suitable for its intended purpose. Additional testing specific to the intended use may be required.1.6 Since surface modifications of medical implants are generally applied in the latter stages of manufacturing, this standard guide does not cover the characterization of either absorbable or non-absorbable surface coatings that are metallic in origin such as oxides or from the addition of other materials such as ceramics or polymers. However, this standard does apply to absorbable metallic materials, regardless of the presence or absence of a coating.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 The use of this test method can significantly reduce the risk of sudden catastrophic failure of threaded articles and fasteners, below their design strength, due to hydrogen embrittlement.1.1 This test method covers the determination of, on a statistical basis, the probability of the existence of hydrogen embrittlement or degradation in:1.1.1 A batch of barrel electroplated, autocatalytic plated, phosphated, or chemically processed threaded articles or fasteners and1.1.2 A batch of rack plated threaded articles, fasteners, or rod.1.2 Industrial practice for threaded articles, fasteners, and rod has evolved three graduated levels of test exposure to ensure reduced risk of hydrogen embrittlement (see Section 3). These levels have evolved from commercial applications having varying levels of criticality. In essence, they represent the confidence level that is required. They also represent the time that finished goods are held before they can be shipped and used. This time equates to additional cost to the manufacturer that may of necessity be added to the cost of the finished goods.1.3 This test method is applicable to threaded articles, fasteners, and rod made from steel with ≥1000 MPa (with corresponding hardness values of 300 HV10 kgf, 303 HB, or 31 HRc) or surface hardened threaded articles, fasteners, or rod.1.4 This test method shall be carried out after hydrogen embrittlement relief heat treatment in accordance with the requirements of Guide B850. It may also be used for assessing differences in processing solutions, conditions, and techniques. This test method has two main functions: first, when used with a statistical sampling plan it can be used for lot acceptance or rejection, and second, it can be used as a control test to determine the effectiveness of the various processing steps including pre- and post-baking treatments to reduce the mobile hydrogen in the articles, fasteners, or rod. While this test method is capable of indicating those items that are embrittled to the extent defined in Section 3, it does not guarantee complete freedom from embrittlement.1.5 This test method does not relieve the processor from imposing and monitoring suitable process control.1.6 This test method has been coordinated with ISO/DIS 10587 and is technically equivalent. (Warning—Great care should be taken when applying this test method. The heads of embrittled articles, fasteners, or rod may suddenly break off and become flying projectiles capable of causing blindness or other serious injury. This hazard can occur as long as 200 h after the test has started. Hence, shields or other apparatus should be provided to avoid such injury.)Note 1—Test Method F1940 can be used as a process control and verification to prevent hydrogen embrittlement in fasteners covered by this test method.Note 2—The use of inhibitors in acid pickling baths does not necessarily guarantee avoidance of hydrogen embrittlement.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Finite element analysis is a valuable tool for evaluating the performance of metallic stents and in estimating quantities such as stress, strain, and displacement due to applied external loads and boundary conditions. FEA of stents is frequently performed to determine the worst-case size for experimental fatigue (or durability) testing and differentiation of performance between designs. A finite element analysis is especially valuable in determining quantities that cannot be readily measured.1.1 Purpose—This guide establishes recommendations and considerations for the development, verification, validation, and reporting of structural finite element models used in the evaluation of the performance of a metallic vascular stent design undergoing uniform radial loading. This standard guide does not directly apply to non-metallic or absorbable stents, though many aspects of it may be applicable. The purpose of a structural analysis of a stent is to determine quantities such as the displacements, stresses, and strains within a device resulting from external loading, such as crimping or during the catheter loading process, and in-vivo processes, such as expansion and pulsatile loading.1.2 Limitations—The analysis technique discussed in this guide is restricted to structural analysis using the finite element method. This document provides specific guidance for verification and validation (V&V) of finite element (FE) models of vascular stents subjected to uniform radial loading using ASME V&V40 as the basis for developing and executing risk-informed V&V plans.1.2.1 Users of this document are encouraged to read ASME V&V40 for an introduction to risk-informed V&V, and to read ASME V&V10 for further guidance on performing V&V of computational solid mechanics models. This document is not intended to cover all aspects of developing a finite element model of radial deformation of a stent. It is intended for a FE analyst with structural modeling experience.1.2.2 While risk-informed V&V is encouraged, it is not required. Analysts may utilize alternate V&V methods. The methodology employed should be developed by knowledgeable stakeholders with consideration as to the expectations and requirements of internal teams and external bodies that will assess the performance of the stent and the credibility of the model used to make performance predictions.1.2.3 If an alternative V&V method is employed, then Sections 5, 6, 7, and 10 that follow ASME V&V40 guidelines may be viewed as suggestions only. Other portions of the document that refer to question of interest, risk, and context of use may be viewed in the same manner.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for informational purposes only.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

At this time, none of these tests has been demonstrated to correlate with field service. It is essential that consideration be given to the appropriate pairing of metal and fluid since these procedures do not restrict the selection of either the containment material or the fluid for testing. Likewise, knowledge of the corrosion protection mechanism and the probable mode of failure of a particular metal is helpful in the selection of test conditions and the observation, interpretation, and reporting of test results. The design of solar heating and cooling systems strongly affects the applicability of the results of the laboratory screening tests. Therefore, the results of these laboratory procedures should be confirmed by component and systems testing under actual or simulated service conditions. Table 1 is provided to assist in an orderly consideration of the important factors in testing. It is expected that the user of the test procedure will investigate a range of test times and temperatures for the containment material in a metal/fluid pair, and adjust the time and temperature of testing as necessary. Note 1—Corrosion, whether general or localized, is a time-dependent phenomenon. This time dependence can show substantial nonlinearity. For example, formation of a protective oxide will diminish corrosion with time, while certain forms of localized attack accelerate with time. The minimum time required for a test to provide a corrosion rate that can be extrapolated for the prediction of long-term performance varies widely, depending on the selection of metal and fluid, and on the form of corrosion attack. Therefore, it is not possible to establish a single minimum length of test applicable to all materials and conditions. However, it is recommended that for the tests described in this practice, a test period of no less than 30 days be used. Furthermore, it is recommended that the effect of time of testing be evaluated to detect any significant time dependence of corrosion attack. It is essential for the meaningful application of these procedures that the length of the test be adequate to detect changes in the nature of the fluid that might significantly alter the corrosivity of the fluid. For example, exhaustion of chemical inhibitor or chemical breakdown of the fluid may occur after periods of months in selected cycles of operation. Note 2—Many fluids that may be considered for solar applications contain additives to minimize the corrosivity of the fluid. Many such additives are useful only within a specific concentration range, and some additives may actually accelerate corrosion if the concentration falls below a critical level. Depletion kinetics can be a strong function of the exposed metal surface area. Therefore, for tests involving fluids with such additives, consideration must be given to the ratio of metal surface area to fluid volume as it may relate to an operating system. TABLE 1 Significant Variables in Evaluation of Containment Material/Heat Transfer Fluid PairsA Test AspectVariable TemperatureFlow Rate I.Operating Conditions of System: A. Operating, full flow B. Stagnant, fullnormal operating fluid boiling point without pressurization or no-flow temperature with pressurization normal operating convection C. Stagnant, partial fill D. Stagnant, emptysame as stagnant, full no-flow temperature convection not applicable II.Test Specimen Design A. flat metal couple B. metal couple with crevice C. dissimilar metal couple D. dissimilar metal couple with crevice III.Fluid TypeA. fluid intended for use in system B. fluid pretreated by thermal exposure or chemical contamination IV.Test CycleA. long time, constant temperature B. cycles of heating, holding, and cooling C. cycles of operating full flow, and stagnation D. cycles of wetting and drying A In this table, the subdivisions are not necessarily related in correspondence to their lettering.1.1 This practice covers several laboratory test procedures for evaluating corrosion performance of metallic containment materials under conditions similar to those that may occur in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these laboratory test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. This practice is not intended to preclude the use of other screening tests, particularly when those tests are designed to more closely simulate field service conditions. 1.2 This practice describes apparatus and procedures for several tests, any one or more of which may be used to evaluate the deterioration of the metallic containment material in a metal/fluid pair. The procedures are designed to permit simulation, heating, and cooling systems including (1) operating full flow, (2) stagnant full, (3) stagnant partial fill, and (4) stagnant empty. Particular attention should be directed to properly reflecting whether the system is open or closed to atmosphere. 1.3 This practice covers the following six tests: Practice ABasic Immersion Test at Atmospheric Pressure Practice BHeat-Rejecting Surface Test at Atmospheric Pressure Practice CHigh-Pressure Test Practice DRepeated Dip Dry Test at Atmospheric Pressure Practice ECrevice Test at Atmospheric Pressure Practice FTube Loop Test at Atmospheric Pressure 1.4 Practice A is concerned with the interaction of metal and fluid when both are at the same temperature with no heat transfer from one to the other. It is regarded as useful for plumbing, pumps, tanking, etc., but of less significance, taken by itself, for collector panels. Practices B and F are concerned with the deterioration of the metal when there is transfer of heat from the metal into the heat transfer fluid. These practices are especially applicable to the collector panel. Practice C permits a variety of tests but is especially useful in relation to systems that experience high temperatures, or are closed to the atmosphere. Practices D and E evaluate specific corrosion problems that may be associated with particular metal/fluid pairs and particular designs of systems and components. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 The maximum length and minimum diameter of the pipe shall be determined by the capacity of the blast equipment used.3.2 This guide is recommended for removing mill scale, rust scale, paints, zincs, and oxides.1.1 This guide covers metallic abrasive blasting to descale the interior of carbon steel pipe.1.2 This guide is recommended for use in conjunction with an abrasive reclamation system.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

A1.1 A1.1.1 This test method is used to measure the torsional yield strength, maximum torque, and breaking angle of the bone screw under standard conditions. The results obtained in this test method are not intended to predict the torque encountered while inserting or removing a bone screw in human or animal bone. This test method is intended only to measure the uniformity of the product tested or to compare the mechanical properties of different, yet similarly sized, products.AbstractThis specification provides requirements for materials, finish and marking, care and handling, and the acceptable dimensions and tolerances for metallic bone screws that are implanted into bone. There are a large variety of medical bone screws currently in use, the following type of screws are used: type HA - spherical undersurface of head, shallow, asymmetrical buttress thread, and deep screw head, type HB - spherical undersurface of head, deep, asymmetrical buttress thread, and shallow screw head, type HC - conical undersurface of head, symmetrical thread, and type HD - conical undersurface of head, symmetrical thread. The torsional strength, breaking angle, axial pullout strength, insertion torque, self-tapping force, and removal torque shall be tested to meet the requirements prescribed.1.1 This specification provides requirements for materials, finish and marking, care and handling, and the acceptable dimensions and tolerances for metallic bone screws that are implanted into bone. The dimensions and tolerances in this specification are applicable only to metallic bone screws described in this specification.1.2 This specification provides performance considerations and standard test methods for measuring mechanical properties in torsion of metallic bone screws that are implanted into bone. These test methods may also be applicable to other screws besides those whose dimensions and tolerances are specified here. The following annexes are included:1.2.1 Annex A1—Test Method for Determining the Torsional Properties of Metallic Bone Screws.1.2.2 Annex A2—Test Method for Driving Torque of Medical Bone Screws.1.2.3 Annex A3—Test Method for Determining the Axial Pullout Load of Medical Bone Screws.1.2.4 Annex A4—Test Method for Determining the Self-Tapping Performance of Self-Tapping Medical Bone Screws.1.2.5 Annex A5—Specifications for Type HA and Type HB Metallic Bone Screws.1.2.6 Annex A6—Specifications for Type HC and Type HD Metallic Bone Screws.1.2.7 Annex A7—Specifications for Metallic Bone Screw Drive Connections.1.3 This specification is based, in part, upon ISO 5835, ISO 6475, and ISO 9268.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 Multiple test methods are included in this standard. However, the user is not necessarily obligated to test using all of the described methods. Instead, the user should only select, with justification, test methods that are appropriate for a particular device design. This may only be a subset of the herein described test methods.1.6 This standard may involve the use of hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
367 条记录,每页 15 条,当前第 13 / 25 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页