4.1 This test method is useful to both producers and purchasers of powders, as outlined in 1.1 and 1.2, in determining particle size distribution for product specifications, manufacturing control, development, and research. 4.2 Users should be aware that sample concentrations used in this test method may not be what is considered ideal by some authorities, and that the range of this test method extends into the region where Brownian movement could be a factor in conventional sedimentation. Within the range of this test method, neither the sample concentration nor Brownian movement are believed to be significant. 4.3 Reported particle size measurement is a function of both the actual particle dimension and shape factor as well as the particular physical or chemical properties being measured. Caution is required when comparing data from instruments operating on different physical or chemical parameters or with different particle size measurement ranges. Sample acquisition, handling, and preparation can also affect reported particle size results. 1.1 This test method covers the determination of particle size distributions of metal powders. Experience has shown that this test method is satisfactory for the analysis of elemental tungsten, tungsten carbide, molybdenum, and tantalum powders, all with an as-supplied estimated average particle size of 6 μm or less, as determined by Test Method B330. Other metal powders (for example, elemental metals, carbides, and nitrides) may be analyzed using this test method with caution as to significance until actual satisfactory experience is developed (see 7.2). The procedure covers the determination of particle size distribution of the powder in the following two conditions: 1.1.1 As the powder is supplied (as-supplied), and 1.1.2 After the powder has been deagglomerated by rod milling as described in Practice B859. 1.2 This test method is applicable to particles of uniform density and composition having a particle size distribution range of 0.1 up to 100 μm. 1.2.1 However, the relationship between size and sedimentation velocity used in this test method assumes that particles sediment within the laminar flow regime. This requires that the particles sediment with a Reynolds number of 0.3 or less. Particle size distribution analysis for particles settling with a larger Reynolds number may be incorrect due to turbulent flow. Some materials covered by this test method may settle with Reynolds number greater than 0.3 if particles greater than 25 μm are present. The user of this test method should calculate the Reynolds number of the largest particle expected to be present in order to judge the quality of obtained results. Reynolds number (Re) can be calculated using the flowing equation where D = the diameter of the largest particle expected to be present, ρ = the particle density, ρ0 = the suspending liquid density, g = the acceleration due to gravity, and η = is the suspending liquid viscosity. A table of the largest particles that can be analyzed with Reynolds number of 0.3 or less in water at 35°C is given for a number of metals in Table 1. A column of the Reynolds number calculated for a 30–μm particle sedimenting in the same liquid system is given for each material also. 1.3 Units—With the exception of the values for density and the mass used to determine density, for which the use of the gram per cubic centimetre (g/cm3) and gram (g) units is the longstanding industry practice, the values in SI units are to be regarded as standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard information is given in Section 7. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 Workability is one of the main factors that influence the compaction quality and ultimately the performance of asphalt pavement. This method uses the relative rotation measured by the wireless particle-size sensor to evaluate the workability of the asphalt mixture.5.2 This test method is used to generate information concerning the workability of an asphalt mixture. Workability characteristics, in turn, can give users insight as to how the mixture will handle and compact in the field.5.3 This method is used to evaluate workability of the mix in a situation where it is being used for research or mix design. It is not intended to be a quality control (QC) evaluation.5.4 This test method can be used to evaluate conventional and modified asphalt mixtures to achieve the best workability at an appropriate compaction temperature. The test method can be used to determine the compaction temperature and optimal dosage rate of additives or modifiers to achieve the best workability for the modified asphalt mixtures, such as polymer modified, crumb rubber modified, waste plastic modified, etc.5.5 This test method is appropriate for laboratory-produced mixtures and plant-produced mixtures, regardless of the type or grade of the binder, the type or gradation of the aggregates, and whether RAP, WMA additives, or other modifiers are used in the asphalt mixture.NOTE 1: The quality of the results produced by this standard is dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers the determination of relative rotation to evaluate the workability of asphalt mixture during compaction using a wireless particle-size sensor. It is applicable to asphalt mixture being compacted using the Superpave Gyratory Compactor (SGC).1.2 This test method is appropriate for use to determine the relative rotation of laboratory-produced and plant-produced asphalt mixtures, regardless of the type or gradation of the aggregates, and whether reclaimed asphalt pavement (RAP), warm mix asphalt (WMA) additives, or any type of modifiers are used in the asphalt mixture.1.3 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered requirements of the standard.1.5 Since a complete precision and bias statement for this standard has not been developed, the test method is to be used for research and informational purposes only. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The purpose of this test method is to provide data on liquid drop-size characteristics for sprays, as indicated by optical nonimaging light-scattering instruments. The results obtained generally will be statistical in nature. The number of variables concerned in the production of liquid spray, together with the variety of optical, electronic, and sampling systems used in different instruments, may contribute to variations in the test results. Care must be exercised, therefore, when attempting to compare data from samples obtained by different means.1.1 The purpose of this test method is to obtain data which characterize the sizes of liquid particles or drops such as are produced by a spray nozzle or similar device under specified conditions using a specified liquid. The drops will generally be in the size range from 5-μm to the order of 1 000-μm diameter; they will occur in sprays which may be as small as a few cubic centimetres or as large as several cubic metres. Typically the number density of the particles can vary significantly from one point to another.1.2 This test method is intended primarily for use in standardizing measurements of the performance of sprayproducing devices. It is limited to those techniques and instruments that operate by passing a beam of light through the spray and analyzing the light scattered by the droplets to derive size information. Such techniques do not produce images of individual drops, and therefore, are known as “optical (nonimaging) instruments.”1.3 The measurements made, when referred to the entire spray being sampled, may be flux sensitive or spatial, as defined in Practice E799, depending on the techniques used with a particular instrument.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
6.1 Sensory thresholds are used to determine the potential of substances at low concentrations to impart odor, taste, skinfeel, etc. to some form of matter.6.2 Thresholds are used, for example, in setting limits in air pollution, in noise abatement, in water treatment, and in food systems.6.3 Thresholds are used to characterize and compare the sensitivity of individuals or groups to given stimuli, for example, in medicine, ethnic studies, and the study of animal species.1.1 The definitions and procedures of this practice apply to the calculation of individual thresholds for any stimulus in any medium, from data sets of intermediate size, that is, consisting of more than 20 to 40 3-AFC presentations per individual. A group threshold may be calculated using 5 to 15 individual thresholds.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 This guide is intended to inform those who have need for particle analysis data of their product or process, how imaging technology, in the form of a DIA, can be employed to provide the required information for a wide range of processes and material types. It expands on dynamic imaging information provided in Guide E2651 which is a broad view of particle analysis methods.4.2 This guide can be used to assess the suitability of the technology to particular applications as well as any limitations that may be encountered. It is also intended to help the user make an informed decision on how to best use the technology to make the measurement(s) most important in providing data that best describes the process or product.4.3 Determining particle shape of materials such as proppants, catalysts, additive manufacturing powders, and many more materials, is critical to their performance. Imaging technology can provide a consistent assessment of shape factors based on objective criteria and a statistically significant number of particles analyzed. Human visual methods generally compare a small number of particles to a standard leaving room for subjective interpretation.4.4 Determining particle count, size and shape are important in assessing contamination of fluids such as fuels, lubricating oils, water, injectables, and other liquids where particle contamination can affect their performance. Particle shape can point to the type and source of these particles which can help analysts improve process control.4.5 Shape information is also advantageous in categorizing particles detected so as to not skew particle analysis results. For instance, if a flowing mixture of solid particles in liquid also contains gas bubbles or water droplets, it is important to be able to identify the bubbles and droplets and not count them as solid particles.1.1 This guide provides information for determining particle size and shape using Dynamic Imaging Analyzers (DIA) in multiple application points including in-line, at-line and stand alone, lab based or portable, configurations. This guide focuses on concepts and strategies for applying imaging techniques to process applications in a way that improves the knowledge of the particles contained in dynamic flows, dry and wet, which can lead to more improved control of manufacturing processes.1.2 Analyzers may be configured for open, dry or wet analysis, or enclosed, dry or wet analysis, as appropriate for analysis of the process or test specimen. Particles in liquid borne flows can be analyzed at least up to 1000 µm and dry particle flows can be analyzed up to several cm if equipment is appropriate for the size. Limitations will be discussed in Section 6.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
AbstractThese test methods establish the apparatuses required, standard procedures, and associated calculations for determining the particle size distribution and shape grading of sand in golf course putting green and other sand-based sports field rootzone mixtures assumed to have sand contents of 80 % by weight or greater. Particles large enough to be retained on a No. 270 sieve are determined by sieving, while, the silt and clay percentages are determined by a sedimentation process using the pipet method.1.1 This test method covers the determination of particle size distribution of putting green and other sand-based rootzone mixes. Particles larger than 0.05 mm (retained on a No. 270 sieve) are determined by sieving. The silt and clay percentages are determined by a sedimentation process, using the pipet method. This procedure was developed for putting green rootzone mixes, those assumed to have sand contents of 80 % by weight or greater. Particle size analysis of soils may be performed by this test method or Test Method D422. This test method also describes a qualitative evaluation of sand particle shape.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
4.1 One of the factors affecting the quality of a radiographic image is geometric unsharpness. The degree of geometric unsharpness is dependent upon the size of the source, the distance between the source and the object to be radiographed, and the distance between the object to be radiographed and the film or digital detector. This test method allows the user to determine the size of the source and to use this result to establish source to object and object to film or detector distances appropriate for maintaining the desired degree of geometric unsharpness.NOTE 1: The European standard CEN EN 12579 describes a simplified procedure for measurement of source sizes of Ir-192, Co-60, and Se-75. The resulting source size of Ir-192 is comparable to the results obtained by this test method.1.1 This test method covers the determination of the size of Iridium-192, Cobalt-60, and Selenium-75 radiographic sources. The determination is based upon measurement of the image of the source in a projection radiograph of the source assembly and comparison to the measurement of the image of a reference sample in the same radiograph or the source guide tube.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车