4.1 This guide contains a listing of those characterization parameters that are directly related to the functionality of alginate. This guide can be used as an aid in the selection and characterization of the appropriate alginate for a particular application. This guide is intended to give guidance in the methods and types of testing necessary to properly characterize, assess, and ensure consistency in the performance of a particular alginate. It may have use in the regulation of these devices by appropriate authorities.4.2 The alginate covered by this guide may be gelled, extruded, or otherwise formulated into biomedical devices for use in tissue-engineered medical products or drug delivery devices for implantation as determined to be appropriate, based on supporting biocompatibility and physical test data. Recommendations in this guide should not be interpreted as a guarantee of clinical success in any tissue engineered medical product or drug delivery application. Further guidance for immobilizing or encapsulating living cells or tissue in alginate gels can be found in Guide F2315.4.3 To ensure that the material supplied satisfies requirements for use in TEMPS, several general areas of characterization should be considered. These are: identity of alginate, physical and chemical characterization and testing, impurities profile, and performance-related tests.1.1 This guide covers the evaluation of alginates suitable for use in biomedical or pharmaceutical applications, or both, including, but not limited to, Tissue Engineered Medical Products (TEMPs).1.2 This guide addresses key parameters relevant for the functionality, characterization, and purity of alginates.1.3 As with any material, some characteristics of alginates may be altered by processing techniques (such as molding, extrusion, machining, assembly, sterilization, and so forth) required for the production of a specific part or device. Therefore, properties of fabricated forms of this polymer should be evaluated using test methods that are appropriate to ensure safety and efficacy and are not addressed in this guide.1.4 Warning—Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The test method provides a relatively simple method for determination of the concentration of RDP without the need for specialty equipment built expressly for such purposes.5.2 Using this test method will afford investigators of radon in dwellings a technique by which the RDP can be determined. The use of the results of this test method are generally for diagnostic purposes and are not necessarily indicative of results that might be obtained by longer term measurement methods.5.3 An improved understanding of the frequency of elevated radon in buildings and the health effect of exposure has increased the importance of knowledge of actual exposures. The measurement of RDP, which are the direct cause of potential adverse health effects, should be conducted in a manner that is uniform and reproducible; it is to this end that this test method is addressed.1.1 This test method provides instruction for using the grab sampling filter technique to determine accurate and reproducible measurements of indoor radon decay product (RDP) concentrations and of the working level (WL) value corresponding to those concentrations.1.2 Measurements made in accordance with this test method will produce RDP concentrations representative of closed-building conditions. Results of measurements made under closed-building conditions will have a smaller variability and are more reproducible than measurements obtained when building conditions are not controlled. This test method may be utilized under non-controlled conditions, but a greater degree of variability in the results will occur. Variability in the results may also be an indication of temporal variability present at the sampling site.1.3 This test method utilizes a short sampling period and the results are indicative of the conditions only at the place and time of sampling. The results obtained by this test method are not necessarily indicative of longer terms of sampling and should not be confused with such results. The averaging of multiple measurements over hours and days can, however, provide useful screening information. Individual measurements are generally obtained for diagnostic purposes.1.4 The range of the test method may be considered from 0.0005 WL to unlimited working levels, and from 40 Bq/m3 to unlimited for each individual radon decay product.1.5 This test method provides information on equipment, procedures, and quality control. It provides for measurements within typical residential or building environments and may not necessarily apply to specialized circumstances, for example, clean rooms.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 9 for additional precautions1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method evaluates RECPs and their means of installation to:5.1.1 Reduce soil loss and sediment concentrations in stormwater runoff under conditions of varying rainfall intensity and soil type, and;5.1.2 Improve water quality exiting the area disturbed by earthwork activity by reducing suspended solids.5.2 This test method models and examines conditions typically found on construction sites involving earthwork activities including: highway and roads; airports; residential, commercial and industrial developments; pipelines, mines, and landfills; golf courses; etc.5.3 This test method is a performance test, but can be used for quality control to determine product conformance to project specifications. Caution is advised since information regarding laboratory specific precision is incomplete. For project specific conformance, unique project-specific conditions should be taken into consideration.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspections/etc. Users of this standard are cautioned that compliance with Practice D3740 does not itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the guidelines, requirements and procedures for evaluating the ability of Rolled Erosion Control Products (RECPs) to protect hillslopes from rainfall-induced erosion. Critical elements of this protection are the ability of the RECP to:1.1.1 Absorb the impact force of raindrops, thereby reducing soil particle loosening through “splash” mechanisms;1.1.2 Slow runoff and encourage infiltration, thereby reducing soil particle displacement and transport through “overland flow” mechanisms;1.1.3 Absorb shear forces of overland flow; and,1.1.4 Trap soil particles beneath.1.2 This test method utilizes full-scale testing procedures, rather than reduced-scale (bench-scale) simulation, and is patterned after conditions typically found on construction sites at the conclusion of earthwork operations, but prior to the start of revegetation work. Therefore this considers only unvegetated conditions.1.3 This test method provides a comparative evaluation of an RECP-to baseline bare soil conditions under controlled and documented conditions.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units, which are provided for information only and are not considered standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.5.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Also, the user must comply with prevalent regulatory codes, such as OSHA (Occupational Health and Safety Administration) guidelines, while using the test method.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 This practice describes the methods of preparation of hot-dip galvanized surfaces prior to the application of powder coating. The key to achieving proper adhesion between powder coatings and galvanized steel is surface preparation. The surface must be entirely free from visible metal oxides prior to powder coating. Any metal oxides that remain on the surface of the galvanized steel can potentially retain air or moisture. Upon heating during the curing stages of the powder application, the oxides may release water vapor or air, which can expand and penetrate the powder coating, causing blisters or voids.4.2 The zinc coating is constantly in a state of change. From the time the steel part is removed from the galvanizing kettle, the exposed zinc coating interacts with the environment to form, first zinc oxides and zinc hydroxides, and then zinc carbonates.5 The process of complete conversion of the outer layer of zinc carbonates can take up to two years of exposure to the environment, depending on the local weather and moisture conditions.4.3 The zinc surface after full weathering is very resistant to atmospheric corrosion because the tight patina that is formed (zinc oxide, zinc hydroxide and zinc carbonate) is dense and tenacious. However, during the formative stages of patina development, the oxide/hydroxide layer is poorly adhered and must be removed in order for the powder coating to adhere properly to the galvanized coating. The second is pinholing/blistering of the coating which can severely limit its potential performance, especially in aggressive chloride environments. Entrapped gasses developed during the galvanizing process escape the surface through the coating as it cures at high temperatures. If these volatile materials are not removed through an outgassing process prior to the baking of the powder, then pinholing or blistering can occur. The presence of pinholes gives chlorides and other corrosive agents access to the zinc substrate consequently producing zinc corrosion products which may leach out through the coatings. While the presence of these corrosion products may not result in associated delamination of the coating, unsightly white staining of the coating can occur. Blisters are defects that are not adhered to the surface and may easily be broken into or off during handling, which creates performance and aesthetic issues. The proper preparation of the galvanized coating surface can increase the adhesion and coverage necessary to overcome these problems and results in a satisfactory service life of the powder coating and the galvanized coating together.4.4 Variations in surface preparation produce end conditions that differ as far as surface roughness and zinc composition, hence they do not necessarily yield identical results when powder coatings are subsequently applied. The age of the zinc corrosion products on the galvanized coating will dictate the type of surface preparation to be selected.1.1 This practice describes methods of preparing surfaces of hot-dip galvanized iron and steel for powder coating and the application of powder coating materials.1.1.1 Powder coating is a dry finishing process which uses finely ground particles of pigment and resin, electrostatically charged, and sprayed onto a part to be coated. The parts are electrically grounded so that the charged particles projected at them adhere to the surface and are held there until melted and fused into a smooth coating in the curing oven.1.1.2 Hot-dip galvanized iron or steel is produced by the immersion of fabricated or un-fabricated products in a bath of molten zinc, as specified in Specification A123/A123M or A153/A153M. This practice covers surface preparation and thermal pretreatment of iron and steel products and hardware which have not been painted or powder coated previously (Practice D6386). Galvanized surfaces may have been treated with protective coatings to prevent the occurrence of wet storage stain. This practice neither applies to sheet galvanized steel products nor to the coil coating or continuous roller coating processes.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The purpose of this guide is to provide guidance on characterization of the properties of porcine fibrinogen as a starting material for surgical implants and as a matrix for tissue-engineered medical products (TEMPs). This guide contains a set of physical and chemical parameters directly related to the function of porcine fibrinogen. This guide can be used to help select and characterize appropriate fibrinogen starting materials for specific purposes. Not all tests or parameters are suitable for all uses of fibrinogen.5.2 Fibrinogen described in this guide may be used in various types of medical products including, but not limited to, implants, tissue-engineered medical products (TEMPs), and cell, drug, or DNA delivery vectors. The recommendations in this guide shall not be construed to guarantee the successful clinical application of any tissue-engineered medical product.5.3 In determining whether fibrinogen meets the requirements for use in a TEMP, the relevant regulatory authorities or other appropriate guidelines relating to the production, regulation, and approval of TEMP products shall be taken into account (Guide E1298, Practice F981, Practice F1983).1.1 This guide covers the evaluation of porcine fibrinogen suitable for use in biomedical or pharmaceutical applications including, but not limited to, tissue-engineered medical products (TEMPs).1.2 This guide addresses key parameters relevant for functionality, characterization, and purity of porcine fibrinogen.1.3 As with any material, some characteristics of porcine fibrinogen may be altered by processing techniques, such as electrospinning (1)2 and sterilization, required for the production of a specific formulation or device. Therefore, properties of fabricated forms of this protein should be evaluated using test methods that are appropriate to ensure safety and efficacy and are not addressed in this guide.1.4 The primary focus of this document is fibrinogen derived from porcine blood, which is similar to human fibrinogen. The biggest advantage that pigs have over other species (such as cattle, sheep, goats, elk, and deer) is that they are less likely to transmit transmissible spongiform encephalitis (TSE) (ISO 22442-1 Annex D; WHO Guidelines, 2003; WHO Guidelines, 2006; WHO Guidelines, 2010). The document may also discuss fibrinogen from other sources when useful information is available. Fibrin is also discussed in some sections.1.5 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method evaluates RECPs and their means of installation to:5.1.1 Reduce soil loss and sediment concentrations in stormwater runoff under conditions of varying channel conditions and soil type;5.1.2 Function within a composite system acting as vegetative reinforcement; and5.1.3 Improve water quality exiting the area disturbed by earthwork activity by minimizing mobilization of in-situ particles within the streambed.5.2 This test method models and examines conditions typically found on construction sites involving earthwork activities, including: highways and roads; airports; residential, commercial and industrial developments; pipelines, mines, and landfills; golf courses; etc.5.3 This test method is a performance test, but can be used for quality control to determine product conformance to project specifications. Caution is advised since information regarding laboratory specific precision is incomplete. For project specific conformance, unique project-specific conditions should be taken into consideration.1.1 This test method covers the guidelines, requirements and procedures for evaluating the ability of Rolled Erosion Control Products (RECPs) to protect earthen channels from stormwater-induced erosion. Critical elements of this protection are the ability of the RECP to:1.1.1 Neutralize and absorb the hydraulic force of stormwater, thereby reducing soil particle loosening through “scour” mechanisms;1.1.2 Slow runoff and encourage sedimentation, thereby reducing soil particle transport downstream;1.1.3 Absorb shear forces of overland flow;1.1.4 Trap soil particles beneath; and1.1.5 Promote the establishment of vegetation.1.2 This test method utilizes full-scale testing procedures, rather than reduced-scale (bench-scale) simulation, and is patterned after conditions typically found on construction sites prior to and after revegetation work. Further, procedures for evaluation of baseline conditions are provided. Thus, test preparation, test execution, data collection, data analysis and reporting procedures herein are intended to be suitable for testing of bare soil, unvegetated RECP, vegetated soil and vegetated RECP conditions.1.3 This test method provides a comparative evaluation of an unvegetated RECP to baseline bare soil conditions and a vegetated RECP to a baseline, vegetated condition under controlled and documented conditions.1.4 The values stated in SI units are to be regarded as standard. The inch-pound units given in parentheses are provided for information purposes only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Also, the user must comply with prevalent regulatory codes, such as OSHA (Occupational Health and Safety Administration) guidelines, while using the test method.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
4.1 This guide contains a listing of those characterization parameters that are directly related to the functionality of chitosan. This guide can be used as an aid in the selection and characterization of the appropriate chitosan or chitosan salt for a particular application. This standard is intended to give guidance in the methods and types of testing necessary to properly characterize, assess, and ensure consistency in the performance of a particular chitosan. It may have use in the regulation of devices containing chitosan by appropriate authorities.4.2 The chitosan salts covered by this guide may be gelled, extruded, or otherwise formulated into biomedical devices for use as tissue-engineered medical products or drug delivery devices for implantation as determined to be appropriate, based on supporting biocompatibility and physical test data. Recommendations in this guide should not be interpreted as a guarantee of clinical success in any tissue-engineered medical product or drug delivery application.4.3 To ensure that the material supplied satisfies requirements for use in TEMPs, several general areas of characterization should be considered. These include identity of chitosan, physical and chemical characterization and testing, impurities profile, and performance-related tests.1.1 This guide covers the evaluation of chitosan salts suitable for use in biomedical or pharmaceutical applications, or both, including, but not limited to, tissue-engineered medical products (TEMPS).1.2 This guide addresses key parameters relevant for the functionality, characterization, and purity of chitosan salts.1.3 As with any material, some characteristics of chitosan may be altered by processing techniques (such as molding, extrusion, machining, assembly, sterilization, and so forth) required for the production of a specific part or device. Therefore, properties of fabricated forms of this polymer should be evaluated using test methods that are appropriate to ensure safety and efficacy.1.4 Warning—Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method evaluates the effect of an ECP on seed germination and initial plant growth in a controlled environment.5.2 The results of this test can be used to compare ECPs and other erosion control materials to determine which are the most effective at encouraging the growth of vegetation.1.1 This test method covers guidelines, requirements, and procedures for evaluating the effect of Erosion Control Products (ECPs) on seed germination and vegetation enhancement.1.2 This test method will evaluate the effects of both rolled erosion control products (RECPs) and hydraulically-applied erosion control products (HECPs) on seed germination in a controlled environment.1.3 This test method utilizes bench-scale testing procedures and shall not be interpreted as indicative of field performance.1.4 This test method is not intended to replace full-scale simulation or field testing in acquisition of performance values that are required in the design of erosion control measures utilizing RECPs and HECPs.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车