微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers inorganic fiber-reinforced organic felt, and inorganic fiber-based asphaltic and nonasphaltic felt underlayments for use as underlayment with steep-slope roofing products. The intent of this specification is to provide criteria for producing and evaluating underlayments with a significantly reduced tendency to wrinkle before or after the installation of steep roofing products. Materials shall be sampled and tested suitably to examine their conformance with performance requirements such as tear strength, pliability, behavior on heating, liquid water transmission, dimensional stability at low to high humidity conditions, and elongation.1.1 This specification covers (1) inorganic fiber-reinforced organic felt underlayment, and (2) inorganic fiber-based felt for use as underlayment with steep-slope roofing products. The intent of this specification is to provide criteria for producing and evaluating underlayments with a significantly reduced tendency to wrinkle before or after the installation of steep roofing products.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 The following safety hazards caveat pertains only to the test method portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory requirements prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

4.1 Fine-grained soils are used in waste containment systems as barriers to flow and contaminant transport. Liquids contained by these barriers can contain ions that may interact with the mineral surfaces in fine-grained soils.4.2 The liquid passing through the pores of fine-grained soil can interact with the mineral surface, and affect the physical and chemical characteristics of the soil. This method can be used as part of an evaluation of these interactions.NOTE 1: The quality of the result produced by this standard depends on the competence of the personnel performing the test and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors. Practice D3740 provides a means of evaluating some of these factors.1.1 This test method describes the procedures for measuring the soluble and bound cations as well as the cation exchange capacity (CEC) of fine-grained inorganic soils. Clay minerals in fine-grained soils carry a negative surface charge that is balanced by bound cations near the mineral surface. These bound cations can be exchanged by other cations in the pore water, which are referred to as soluble cations. The cation exchange capacity is a measure of the negative surface charge on the mineral surface. The CEC generally is satisfied by calcium (Ca), sodium (Na), magnesium (Mg), and potassium (K), although other cations may be present depending on the environment in which the soil exists. This test method was developed from concepts described previously in Lavkulich (1981) (1)2 and Rhoades (1982) (2). In soils with appreciable gypsum or calcite, dissolution of these minerals will release Ca in solution that may affect the measurement.1.2 In this test method, the soluble salts from the mineral surface are washed off with de-ionized water and then the concentration of soluble salts within the extract is measured. The bound cations of the clay are measured by using a solution containing an index ion that forces the existing cations in the bound layer into solution. The total concentrations of bound and soluble cations in this solution are measured. The CEC is measured by displacing the index ion with another salt solution and measuring the amount of the displaced index ion.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026. The procedures in Practice D6026 that are used to specify how data are collected, recorded, and calculated are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the objectives of the user. Increasing or reducing the significant digits of reported data to be commensurate with these considerations is common practice. Consideration of the significant digits to be used in analysis methods for engineering design is beyond the scope of this standard.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

This specification covers corrosion-resistant coating consisting of an inorganic aluminum particle-filled basecoat and an organic or inorganic topcoat. The basecoat is a water-dilutable slurry containing aluminum particles dispersed in a liquid binder of chromate/phosphate compounds. The organic topcoats consist of polymer resins and dispersed pigments. The inorganic topcoats consist of ceramic oxide pigments dispersed in a liquid binder of chromate/phosphate compounds. These coatings are applied by conventional dip/spin, dip/drain, or spray methods. The coating systems defined by this specification can be applied to ferrous alloy steels, aluminum, and ferritic and austenitic stainless steels. The inorganic aluminum particle-filled basecoat and the subsequent topcoats are classified into three groups, with subsequent subgroups. Materials shall be tested and the individual grades shall conform to specified values of appearance, adhesion, corrosion, thread-fit, weathering, coating thickness, and humidity.1.1 This specification covers the basic requirements for a corrosion-resistant coating consisting of an inorganic aluminum particle-filled basecoat and an organic or inorganic topcoat, depending on the specific requirements.1.2 The coating may be specified with basecoat only, or with the top coated with compatible organic polymer or inorganic topcoats, depending on the specific requirements.1.3 The basecoat is a water-dilutable slurry containing aluminum particles dispersed in a liquid binder of chromate/phosphate compounds.1.4 The organic topcoats consist of polymer resins and dispersed pigments and are for service where temperatures do not exceed 230 °C (450 °F).1.5 The inorganic topcoats consist of ceramic oxide pigments dispersed in a liquid binder of chromate/phosphate compounds and are for service where temperatures do not exceed 645 °C (1200 °F).1.6 These coatings are applied by conventional dip/spin, dip/drain, or spray methods.1.7 The coating process does not normally induce hydrogen embrittlement, provided that the parts to be coated have not been subjected to an acid cleaner or pretreatment (see Note 1).NOTE 1: Although this coating material contains water, it has a relatively low susceptibility to inducing hydrogen embrittlement in steel parts of tensile strengths equal to or greater than 1000 MPa (approximately RC31). Normal precautions for preparing, descaling, and cleaning steels of these tensile strengths must be observed. An initial stress relief treatment should be considered prior to any chemical treatment or cleaning operation. Acids or other treatments that evolve hydrogen should be avoided. Mechanical cleaning methods may be considered. Some steels are more susceptible to hydrogen embrittlement than others and may also require hydrogen embrittlement relief baking after cleaning but before coating. Since no process can completely guarantee freedom from embrittlement, careful consideration must be given to the entire coating process and the specific steel alloy employed.1.8 The coating systems defined by this specification can be applied to ferrous alloy steels, aluminum, and ferritic and austenitic stainless steels.1.9 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.10 The following safety hazards caveat pertains only to the test methods portion, Section 6, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

4.1 Ethyl silicate zinc-rich primers cure by the reaction of the vehicle with moisture, thereby providing a binder for the zinc. As relative humidity and temperature vary, so does the rate of cure. A certain minimum degree of cure is necessary prior to topcoating. It has been shown that the degree of cure of ethyl silicate zinc-rich primers can be measured by the chemical changes occurring using diffuse reflectance infrared spectroscopy.2 This solvent rub test has been shown to correlate well with the infrared spectroscopic results of some two-component ethyl silicate inorganic zinc systems.4.2 The degree of cure rating (Resistance Rating in Table 1) required prior to the application of specific topcoats must be agreed upon before the practice is used.1.1 This practice describes a solvent rub technique for assessing the MEK resistance of ethyl silicate (inorganic) zinc-rich primers. The MEK resistance of some two-component ethyl silicate zinc-rich primers has been shown to correlate well with the cure of the primer as determined by diffuse reflectance infrared spectroscopy.2 The technique can be used in the laboratory, field, or in the fabricating shop. Practice D5402 is the preferred method for organic coatings.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 6. Consult supplier’s Safety Data Sheet(s) for specific hazard information relating to the solvent used.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant. These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.1.1 This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant.1.2 These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.NOTE 1: If used, phosphate to be used in accordance with Specification F1137, grade 0.1.3 Units—The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 Capillary ion electrophoresis provides a simultaneous separation and determination of several inorganic anions using nanolitres of sample in a single injection. All anions present in the sample matrix will be visualized yielding an anionic profile of the sample.5.2 Analysis time is less than 5 minutes with sufficient sensitivity for drinking water and wastewater applications. Time between samplings is less than seven minutes allowing for high sample throughput.5.3 Minimal sample preparation is necessary for drinking water and wastewater matrices. Typically, only a dilution with water is needed.5.4 This test method is intended as an alternative to other multi-analyte methods and various wet chemistries for the determination of inorganic anions in water and wastewater. Compared to other multi-analyte methods the major benefits of CIE are speed of analysis, simplicity, and reduced reagent consumption and operating costs.1.1 This test method covers the determination of the inorganic anions fluoride, bromide, chloride, nitrite, nitrate, ortho-phosphate, and sulfate in drinking water, wastewater, and other aqueous matrices using capillary ion electrophoresis (CIE) with indirect UV detection. See Figs. 1-6.1.2 The test method uses a chromate-based electrolyte and indirect UV detection at 254 nm. It is applicable for the determination or inorganic anions in the range of 0.1 to 50 mg/L except for fluoride whose range is 0.1 to 25 mg/L.1.3 It is the responsibility of the user to ensure the validity of this test method for other anion concentrations and untested aqueous matrices.NOTE 1: The highest accepted anion concentration submitted for precision and bias extend the anion concentration range for the following anions: Chloride to 93 mg/L, Sulfate to 90 mg/L, Nitrate to 72 mg/L, and ortho-phosphate to 58 mg/L.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.

定价: 646 加购物车

在线阅读 收 藏

5.1 This test method is used for determination of the carbon content of water from a variety of natural, domestic, and industrial sources. In its most common form, this test method is used to measure organic carbon as a means of monitoring organic pollutants in high purity and drinking water. These measurements are also used in monitoring waste treatment processes.5.2 The relationship of TOC to other water quality parameters such as chemical oxygen demand (COD) and total oxygen demand (TOD) is described in the literature (6).1.1 This test method covers the determination of total carbon (TC), inorganic carbon (IC), and total organic carbon (TOC) in water in the range from 0.5 to 30 mg/L of carbon. Higher levels may be determined by sample dilution. The test method utilizes ultraviolet-persulfate oxidation of organic carbon, coupled with a CO2 selective membrane to recover the CO2 into deionized water. The change in conductivity of the deionized water is measured and related to carbon concentration in the oxidized sample. Inorganic carbon is determined in a similar manner without the requirement for oxidation. In both cases, the sample is acidified to facilitate CO2 recovery through the membrane. The relationship between the conductivity measurement and carbon concentration is described by a set of chemometric equations for the chemical equilibrium of CO2, HCO3−, H+, and the relationship between the ionic concentrations and the conductivity. The chemometric model includes the temperature dependence of the equilibrium constants and the specific conductances.1.2 This test method has the advantage of a very high sensitivity detector that allows very low detection levels on relatively small volumes of sample. Also, use of two measurement channels allows determination of CO2 in the sample independently of organic carbon. Isolation of the conductivity detector from the sample by the CO2 selective membrane results in a very stable calibration, with minimal interferences.1.3 This test method was used successfully with reagent water spiked with sodium bicarbonate and various organic materials. It is the user's responsibility to ensure the validity of this test method for waters of untested matrices.1.4 This test method is applicable only to carbonaceous matter in the sample that can be introduced into the reaction zone. The injector opening size generally limits the maximum size of particles that can be introduced.1.5 In addition to laboratory analyses, this test method may be applied to on line monitoring.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590 加购物车

在线阅读 收 藏

5.1 This test method is useful for detecting and determining organic and inorganic carbon impurities in water from a variety of sources including industrial water, drinking water, and waste water.5.2 Measurement of these impurities is of vital importance to the operation of various industries such as power, pharmaceutical, semiconductor, drinking water treatment, and waste treatment. Semiconductor and power applications require measurement of very low organic carbon levels (TOC < 1 μg/L). Applications in pharmaceutical industries range from USP purified water (TOC < 500 μg/L) to cleaning applications (500 μg/L < TOC < 50 000 μg/L). Drinking waters range from <100 μg/L to 25 000 μg/L and higher. Some of these applications may include waters with substantial ionic impurities as well as organic matter.5.3 Measurement of inorganic carbon as well as total organic carbon is highly important to some applications, such as in the power industry.5.4 Continuous monitoring and observation of trends in these measurements are of interest in indicating the need for equipment adjustment or correction of water purification procedures.5.5 Refer to the Bibliography section for additional information regarding the significance of this test method.1.1 This test method covers the on-line determination of total carbon (TC), inorganic carbon (IC), and total organic carbon (TOC) in water in the range from 0.5 μg/L to 50 000 μg/L of carbon. Higher carbon levels may be determined by suitable on-line dilution. This test method utilizes ultraviolet-persulfate oxidation of organic carbon coupled with a CO2 selective membrane to recover the CO2 into deionized water. The change in conductivity of the deionized water is measured and related to carbon concentration in the oxidized sample using calibration data. Inorganic carbon is determined in a similar manner without the requirement for oxidation. In both cases, the sample is acidified to facilitate CO2 recovery through the membrane. The relationship between the conductivity measurement and carbon concentration can be described by a set of chemometric equations for the chemical equilibrium of CO2, HCO3−, H+, and OH−, and the relationship between the ionic concentrations and the conductivity. The chemometric model includes the temperature dependence of the equilibrium constants and the specific conductances resulting in linear response of the method over the stated range of TOC. See Test Method D4519 for a discussion of the measurement of CO2 by conductivity.1.2 This test method has the advantage of a very high sensitivity detector that allows very low detection levels on relatively small volumes of sample. Also, the use of two measurement channels allows determination of IC in the sample independently of organic carbon. Isolation of the conductivity detector from the sample by the CO2 selective membrane results in a very stable calibration with minimal interferences.1.3 This test method was used successfully with reagent water spiked with sodium carbonate and various organic compounds. This test method is effective with both deionized water samples and samples of high ionic strength. It is the user's responsibility to ensure the validity of this test method for waters of untested matrices.1.4 This test method is applicable only to carbonaceous matter in the sample that can be introduced into the reaction zone. The inlet system generally limits the maximum size of particles that can be introduced. Filtration may also be used to remove particles, however, this may result in removal of organic carbon if the particles contain organic carbon.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590 加购物车

在线阅读 收 藏

5.1 The objective of this practice is to provide guidelines for the preparation of stable, representative, oxidized, relatively unpolluted, aquatic natural-matrix bed-sediment reference test samples. When prepared as described, such test samples should be useful for collaborative methods testing, to evaluate the precision and bias of test methods, and to evaluate test methods performance during their development.5.2 The availability of defined representative natural-matrix reference or test samples, closely approximating a variety of typical environmental samples, is a key requirement for the effective collaborative methods evaluation and development of test methods, and quality assurance testing. When the composition of the reference or test samples has been determined, either for operationally defined “total recoverable” leaching techniques, or for “total analysis” determined by total dissolution, the defined samples should also be suitable for analytical quality assurance testing.5.3 Certified analyses of most rock, sediment, sludge, and soil reference samples are typically based on the total amount of each constituent of interest in the entire sample. “Total” chemical analysis of these samples generally requires complete decomposition or dissolution of the standard material. These are the only feasible analytical approaches if knowledge of finite concentrations for each element of interest in the entire sample is required. Certain instrumental methods, such as X-ray fluorescence or neutron activation analysis, may provide information as to the total constituent composition without sample destruction.5.4 Partial chemical extraction of sediments, or “total recoverable” analyses (operationally defined procedures) for selecting constituents, frequently are useful for defining “available” constituent concentrations. In addition, partial chemical extractions may also provide data on partitioning, phase associations, or on how trace elements are entrained. Operationally defined extractable trace constituent concentrations are generally best obtained by using very specific reagent mixtures and extraction procedures, including method of mixing, vessel size and shape, extraction time, temperature, and so forth.5.5 The various iron and manganese oxides and hydroxides, clay minerals, and organic solutes and particulates, that commonly occur as coatings on most oxidized sediment particles, are generally recognized as the controls governing the concentrations and distribution of most trace metals in natural water-sediment hydrologic environments. Anthropogenic sources clearly dominate in the number of sources and in total loading to most systems, although other factors may also be important.3 Under reducing conditions the iron and manganese oxide coatings, organic components, and associated trace metals may be resolubilized and remobilized. Migration of the reduced solubilized species, with possible subsequent formation of sulfides and so forth, and reoxidation and redeposition at some new location, may then occur. Analysis of extractable trace constituent concentrations in leachates obtained from reduced sediments thus will probably not be indicative of the trace constituent concentrations initially associated with the oxidized and coated sediment grains.1.1 This practice covers uniform procedures to develop, select, collect, prepare, and use oxidized, relatively unpolluted, aquatic natural-matrix bed-sediment reference samples for the collaborative testing of chemical methods of analysis for sediments and similar materials. Reference samples prepared using this practice are intended for use as natural sediments, analyzable for major, minor, and trace elements, and general physical/organic analyses only. The samples are not designed or tested for environmental pollutants such as trace organic compounds.1.2 Few, if any, aquatic sediment reference materials have been certified, defined, or are even available for developing or evaluating partial and sequential extraction procedures. This practice describes factors and considerations in site selection, sample characteristics, collection, and subsequent raw sample treatment needed to prepare natural-matrix bed-material sediments for use as partial or sequential extraction procedure reference test samples. The user of this practice is cautioned that in light of the many variables that may affect natural materials, neither the list of factors included for evaluation nor preparation of natural-matrix reference samples should be considered as all inclusive. It is the user’s responsibility to ensure the validity and applicability of these practices for preparing specific-matrix samples appropriate for testing the constituents of interest and the operationally defined extraction procedures utilized.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏
120 条记录,每页 15 条,当前第 3 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页