微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification applies to plastic parts that are created using powder bed fusion processes, including unfilled formulations and formulations containing fillers, functional additives (for example, flame retardant), and reinforcements or combinations thereof. The requirements are intended for use by manufacturers of plastic parts using powder bed fusion and for customers procuring such parts. The specification covers process classification, ordering information, materials (material specification and virgin powder), fabrication of test specimens, and material processing. Dimensional tolerances, source inspection, retest and rejection of parts, material and process certification, certification for parts, and identification marking of product are also specified, together with part packaging and package marking. A figure presents the specifications for mechanical testing of powder bed fusion polymer parts.1.1 This specification describes a method for defining requirements and ensuring component integrity for plastic parts created using powder bed fusion processes. Materials include unfilled formulations and formulations containing fillers, functional additives (for example, flame retardant), and reinforcements or combinations thereof. Processes include all powder bed fusion processes as defined in Terminology F2792.1.2 This specification is intended for use by manufacturers of plastic parts using powder bed fusion and for customers procuring such parts.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The ability of PVC granules to accept a plasticizer and become a dry free-flowing powder is related to the internal pore structure of the resin, resin temperature, plasticizer temperature, and the plasticizer used. By choosing an applicable plasticizer and maintaining a uniform temperature for the resin and plasticizer, it is possible to classify resins by how rapidly they absorb plasticizer. Resin suitability for a specific intensive mixing operation can be ascertained using these test methods.1.1 These test methods cover the determination of the powder-mix time of a general-purpose poly(vinyl chloride) (PVC) resin.1.2 The values stated in SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: ISO 4574-2019 is covering the primary subject of this ASTM method.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM B243-23 Standard Terminology of Powder Metallurgy Active 发布日期 :  1970-01-01 实施日期 : 

1.1 This terminology standard includes definitions that are helpful in the interpretation and application of powder metallurgy terms.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers a variety of copper base powder metallurgy (PM) structural materials, including those used in applications where high electrical conductivity is required. It includes a classification system, or material designation code. With the classification system, this specification includes chemical composition and minimum tensile yield strength.NOTE 1: Paragraphs 6.1 and 8.1 govern material classification by the designation code. The classification system is explained in the Appendix.NOTE 2: Materials classified as C-0000 are expected to be used in applications where high electrical conductivity is required.1.2 Units—With the exception of density values, for which the gram per cubic centimetre (g/cm3) unit is the industry standard, the values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 605元 / 折扣价: 515

在线阅读 收 藏

This specification covers the magnetic property requirements of 50 nickel-50 iron soft magnetic parts fabricated by powder metallurgy techniques in the sintered or annealed conditions, intended for parts that require high magnetic permeability, high electrical resistivity, low coercive field strength, and low hysteresis loss. This specification does not cover parts produced by metal injection molding. Parts shall be tested and adhere to the chemical composition, sintered density and coercive field strength requirements listed in this specification. Appendices contain information on typical magnetic properties and heat treatment.1.1 This specification covers the magnetic properties of 50 nickel-50 iron parts fabricated by powder metallurgy techniques and is intended for parts that require high magnetic permeability, high electrical resistivity, low coercive field strength, and low hysteresis loss. It differs from the wrought alloy specification (see Specification A753) because these parts are porous. A number of magnetic properties such as permeability are proportional to the sintered density.1.2 This specification deals with powder metallurgy parts in the sintered or annealed condition. Should the sintered parts be subjected to any secondary operation that causes mechanical strain, such as machining or sizing, they should be resintered or annealed.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to customary (cgs-emu and inch-pound) units, which are provided for information only and are not considered standard.1.3.1 There are selected values presented in two units, both of which are in acceptable SI units. These are differentiated by the word “or,” as in “μΩ-cm, or, Ω-m.”1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification defines the physical and chemical requirements for hafnium oxide powder intended for fabrication into shapes for use in a nuclear reactor core.1.2 The material described herein shall be particulate in nature.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification tackles standards for pressure consolidated powder metallurgy iron-nickel-chromium-molybdenum and nickel-chromium-molybdenum-columbium pipe flanges, fittings, valves, and parts intended for general corrosion or heat-resisting service. Compacts shall be manufactured by placing a single powder blend into a can, evacuating the can, and sealing it. The can material shall then be selected to ensure that it has no deleterious effect on the final product. The specimen shall be heated and placed under sufficient pressure for a sufficient period of time to ensure that the final consolidated part is fully dense. The powder shall be produced by vacuum melting followed by gas atomization. The heats shall be thoroughly mixed to ensure homogeneity when powder from more than one heat is used to make a blend. The material shall have the chemical compositions of carbon, manganese, silicon, phosphorus, sulfur, chromium, molybdenum, nickel, iron, cobalt, columbium, aluminum, titanium, nitrogen, and copper. Hydrostatic test shall be conducted and the specimen must show no leaks. The density test shall be performed using sample suspended from a scale and weighed in air and water using Archimede’s principle. Check Analysis shall be wholly the responsibility of the purchaser. The parts of the specimen shall be uniform in quality and condition, and shall be free from injurious imperfections.1.1 This specification covers pressure consolidated powder metallurgy nickel alloy pipe flanges, fittings, valves, and parts intended for general corrosion or heat-resisting service.1.1.1 UNS N06625 products are furnished in two grades of different heat-treated conditions:1.1.1.1 Grade 1 (annealed)—Material is normally employed in service temperatures up to 1100 °F (593 °C).1.1.1.2 Grade 2 (solution annealed)—Material is normally employed in service temperatures above 1100 °F (593 °C) when resistance to creep and rupture is required.1.2 UNS N08367 products are furnished in the solution annealed condition.1.3 UNS N06600 products are furnished in the annealed condition.1.4 UNS N06690 products are furnished in the annealed condition.1.5 UNS N07718 products are furnished in the solution annealed + precipitation hardened condition.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 The following safety hazards caveat pertains only to test methods portions, Sections 7.3 and 13, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and to determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers poly(ether ketone ketone) materials, commonly referred to as PEKK, which are suitable for molding, extrusion, composites, powder coating and additive manufacturing. Only materials in this Class 6-8 are covered by this specification. This classification system provides requirements for the use of regrind or reprocessed materials.1.2 This specification covers thermoplastic resin materials supplied in pellet as well as powder form.1.3 This specification applies only to PEKK copolymers, without any additional fillers or inorganic additives, alloys, or treatments for modification of attributes.1.4 This classification system and subsequent line callout (specification) are intended to provide means of calling out poly(ether ketone ketone) materials used in the fabrication of end items or parts.1.5 Poly(ether ketone ketone) (PEKK) is a member of the poly (aryl ether ketone) or PAEK polymer family. PEKK has a broad range of repeat unit combinations of Isophthaloyl and Terephthaloyl repeat units. This standard classifies the polymer options.1.6 The values stated in SI units, as detailed in IEEE/ASTM S-10, are to be regarded as the standard. The values given in parentheses are for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.NOTE 2: PEKK is a thermoplastic polymer. Testing conditions can affect the technical results. Specimens prepared by techniques different than prescribed in this specification can have properties that vary from the values specified.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Interpretation and use of data generated by particle characterization methods is highly dependent on the definitions of terms describing that data. It is extremely important that those terms be defined in precisely the same way both when comparing data from different characterization techniques and even when correlating data from the same technique.3.2 It is likewise important that users of particle characterization methods and the data generated therefrom understand the principles of the methods, so that differences and similarities in the data can be interpreted in relation to those principles. That understanding can help to avoid disagreements when data from different characterization methods are compared.3.3 The definitions contained in this terminology will aid in the interpretation of particle characterization data with respect to the method(s) used to produce that data.1.1 This terminology covers the definitions of terms used in the description and procedures of analysis of particulate materials not ordinarily analyzed using test sieves. The terms relate directly to the equipment used in analysis, the physical forms of the materials to be analyzed, and selected descriptive data reduction and analysis formats.1.2 Committee E29 on Particle and Spray Characterization believes that it is essential to include terms and definitions explicit to the committee’s scope, regardless of whether the terms appear in existing ASTM standards. Terms that are in common usage and appear in common-language dictionaries are generally not included, unless they have specific meanings in the context of particle characterization different from the common-language definitions.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 All commercial reflectometers measure relative reflectance. The instrument reading is the reflectance factor, the ratio of the light reflected by a reference specimen to that reflected by a test specimen. That ratio is dependent on specific instrument parameters.5.2 National standardizing laboratories and some research laboratories measure reflectance on instruments calibrated from basic principles, thereby establishing a scale of absolute reflectance as described in CIE Publication No. 44 (2). These measurements are sufficiently difficult that they are usually left to laboratories that specialize in them.5.3 A standard that has been measured on an absolute scale could be used to transfer that scale to a reflectometer. While such procedures exist, the constraints placed on the mechanical properties restrict the suitability of some optical properties, especially those properties related to the geometric distribution of the reflected light. Thus, reflectance factor standards which are sufficiently rugged and able to be cleaned, depart considerably from the perfect diffuser in the geometric distribution of reflected radiance.5.4 The geometric distribution of reflected radiance from a pressed powder plaque is sufficiently diffuse to provide a dependable calibration of a directional-hemispherical reflectometer. Although pressed powder standards are subject to contamination and breakage, the directional-hemispherical reflectance factor of pressed powder standards can be sufficiently reproducible from specimen to specimen made from a given lot of powder, so as to allow one to assign absolute reflectance factor values to all the powder in a lot.5.5 This practice describes how to prepare white reflectance factor standards from a powder in a manner that allows a standardizing laboratory to assign the absolute scale of reflectance to the plaque.NOTE 1: The collar and receptacle should be securely held in place before pressing the powder.1.1 This practice covers procedures for preparing pressed powder transfer standards. These standards can be used in the near-ultraviolet, visible and near-infrared region of the electromagnetic spectrum. Procedures for calibrating the reflectance factor of materials on an absolute basis are contained in CIE Publication No. 44 (2). Pressed powder standards are used as transfer standards for such calibrations because they have a high reflectance factor that is nearly constant with wavelength, and because the geometric distribution of reflected flux resembles that from the perfect reflecting diffuser.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the requirements for cobalt-28chromium-6molybdenum alloy powders for coating of orthopedic implants. This specification covers powder requirements only and does not address coating properties. Materials may be manufactured by rotating electrode process, inert gas atomization, or other methods that meet the powder requirements of this specification. The powder shall conform to chemical composition, sieve analysis, and cleanliness requirements of this specification.1.1 This specification covers the requirements for cobalt-28chromium-6molybdenum alloy powders for use in fabricating cobalt-28chromium-6molybdenum alloy medical devices.1.2 Powders covered under this specification may be used to form coatings by sintering or thermal spraying techniques, or in metal injection molding or additive manufacturing.1.3 This specification covers powder requirements only. It does not address properties of the coatings or components formed from them.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM F589-23 Standard Consumer Safety Specification for Non-Powder Guns Active 发布日期 :  1970-01-01 实施日期 : 

6.1 This consumer safety specification establishes performance requirements and test methods intended to provide a reasonable degree of safety in the normal use of non-powder guns and projectiles.6.2 This consumer safety specification attempts to address the misuse of non-powder guns and specifies the minimum warnings and instructions that are to be provided in literature and on labels and packages.1.1 This consumer safety specification covers non-powder guns, commonly referred to as BB guns, air guns, and pellet guns, which propel a projectile by means of energy released by compressed air, compressed gas, mechanical spring action, or a combination thereof, and is to be used in conjunction with Specification F590.1.2 Special-purpose match precision and adult guns, as defined in 3.1 and classified in 8.1 and 8.2, are exempt from the performance requirements for trigger mechanisms (see 4.3), safety mechanisms (see 4.4), and drop tests (see 4.5).1.3 Special-purpose training guns, as defined in 3.1 and classified in 8.3, are exempt from the performance requirements for the safety mechanism (see 4.4).1.4 Limitations—This consumer safety specification does not cover the following categories of gun products: custom-made non-powder guns (see 3.1.2.6); or replica guns (see 3.1.2.15); tranquilizer dart guns; toy products such as rubber-band guns, cork guns, pop guns, rubber-tip dart guns, or pea and bean shooters; other recreational-type guns such as blow guns, spear guns, catapult guns (also identified as sling shots), bows, crossbows, paintball markers, air soft or soft air guns, or carbide guns; nonrecreational guns such as those used by law enforcement, scientific, or military agencies; nor industrial and consumer tools such as paintball guns, staple guns, or conduit guns.1.5 The values stated in inch-pound units are to be regarded as the standard; the SI units in parentheses are provided for information only.1.6 The following precautionary caveat pertains only to the test method portion, Section 9, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 For PM materials containing less than two percent porosity, a density measurement may be used to determine if the part has been densified, either overall or in a critical region, to the degree required for the intended application. Density alone cannot be used for evaluating the degree of densification because chemical composition and heat treatment affect the pore-free density.5.2 For cemented carbides, a density measurement is normally used to determine if there is any significant deviation in composition of the carbide grade. For straight tungsten carbide-cobalt grades, the relationship is straightforward. For complex carbide grades (for example, grades containing tantalum carbide or titanium carbide, or both, in addition to tungsten carbide-cobalt), the situation is more complicated. If the measured density is beyond the specified limits, the composition is outside of the specified limits. A measured density within the specified limits does not ensure correct composition; compensation between two or more constituents could result in the expected density with the wrong composition. Density alone cannot be used for evaluating a cemented carbide grade.1.1 This test method covers the determination of density for powder metallurgy (PM) materials containing less than two percent porosity and for cemented carbides. This test method is based on the water displacement method.NOTE 1: A test specimen that gains mass when immersed in water indicates the specimen contains surface-connected porosity. Unsealed surface porosity will absorb water and result in calculated density values higher than the true value. This test method is not applicable if this problem occurs, and Test Methods B962 should be used instead.1.2 Units—With the exception of the values for density and the mass used to determine density, for which the use of the gram per cubic centimetre (g/cm3) and gram (g) units is the long-standing industry practice, the values in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification provides chemical and physical requirements for nuclear-grade gadolinium oxide powder intended for subsequent processing and use in nuclear fuel applications. Chemical requirements of the specification include loss-on-ignition, gadolinium oxide concentration, and impurity content limits. The buyer shall specify the particle size, density, shape factor, and crystal structure. Gadolinium oxide powder shall be packaged in sealed containers.1.1 This specification provides the chemical and physical requirements for nuclear-grade gadolinium oxide powder intended for subsequent processing and use in nuclear fuel applications, for example, as an addition to uranium dioxide.1.2 This specification does not include requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aware of and comply with all federal, state, and local regulations pertaining to possessing, shipping, processing, or using this material.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
116 条记录,每页 15 条,当前第 3 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页