微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 These methods determine the compressive strength of structural panels in response to stresses acting in the plane of the panel.3.2 Method A—This method is applicable to structural panels of uniform properties within a panel. It is useful for evaluating plywood of clear, straight-grained veneers, and determining the effect of chemical or preservative treatments, construction, principal direction with respect to direction of stress, and other variables that are expected to uniformly influence the panel.3.3 Method B: 3.3.1 The compressive properties obtained by this method are a reliable approximation of the strength of a full-size panel, and are intended for use in design.3.3.2 The compressive properties are influenced by buckling; however, this effect can be eliminated in this test by restraining the edges of the specimens.3.4 It is recommended that where comparisons are to be made, that the same method and specimen size be used throughout. This is because the volume of material included in a test specimen can influence the compressive strength regardless of whether the material properties are uniform throughout the sheet or vary widely due to the presence of growth or manufacturing features.1.1 These test methods cover the determination of the compression properties of wood-based structural panels. Wood-based structural panels in use include plywood, waferboard, oriented strand board, and composites of veneer and of wood-based layers.1.2 Method A, Compression Test for Small Specimens—This method is applicable to small specimens that are uniform with respect to elastic and strength properties. Two types of compression tests are employed: one to evaluate both elastic and compressive strength properties, and the second to evaluate maximum compressive strength only.1.3 Method B, Compression Test for Large Specimens—This method employs large specimens and responds well to manufacturing variables and growth characteristics that influence compression properties of structural panels.1.3.1 This method is intended for the following:1.3.1.1 Comparative tests of structural panels,1.3.1.2 Evaluating the effects of moisture content on strength properties of structural panels,1.3.1.3 Determining the strength properties of structural panels, and1.3.1.4 Evaluating the effects of raw material and manufacturing variables on compression properties of structural panels.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

This specification is for nonmetallic honeycomb core used in the manufacture of adhesively bonded sandwich panels for tactical shelters. Five types of nonmetallic honeycomb material are specified: type I - honeycomb for use in panels which are required to have a high load-carrying capability that could not be adequately met using any of the other type; type II - honeycomb for use in panels which are required to have a load-carrying capability that could not be adequately met by using materials of any of types III, IV, or V; type III - honeycomb for general use in panels where the higher performances of types I, II, and IV materials are not required; type IV - honeycomb similar to type II but with slightly lower performance; and type V - honeycomb similar to type III but with slightly lower performance. The density, honeycomb core shear, honeycomb core compression, honeycomb core cyclic aging, honeycomb core brittleness impact, flatwise tensile, and pH shall be tested to meet the requirements prescribed. The fungus resistance test, thermal resistance test, shear modulus test, core compressive modulus test, water migration resistance test, flame resistance test, and dimensional examination shall be performed to meet the requirements prescribed.1.1 This specification is for nonmetallic honeycomb core used in the manufacture of adhesively bonded sandwich panels for tactical shelters. The materials are intended for adhesive bonding to aluminum facings using materials and processes defined by Practices E864 and E874, and Specifications E865, E866, and E990. This specification covers five main types of honeycomb for use in sandwich panels, Types I, II, III, IV, and V. Types I, II, and III honeycombs correspond to three honeycomb densities. Types IV and V are similar to Types II and III, respectively, but have lower performance requirements.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. For conversion of quantities in various systems of measurement to SI units, refer to Practice E380.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 The techniques described in this guide, if properly used in conjunction with a knowledge of behavior of particular material systems, will aid in the proper preparation of consolidated laminates for mechanical property testing.5.2 The techniques described are recommended to facilitate the consistent production of satisfactory test specimens by minimizing uncontrolled processing variance during specimen fabrication.5.3 Steps 3 through 8 of the 8-step process may not be required for particular specimen or test types. If the specimen or test does not require a given step in the process of specimen fabrication, that particular step may be skipped.5.4 A test specimen represents a simplification of the structural part. The test specimen's value lies in the ability of several sites to be able to test the specimen using standard techniques. Test data may not show identical properties to those obtained in a large structure, but a correlation can be made between test results and part performance. This may be due, in part, to the difficulty of creating a processing environment for test specimens that identically duplicates that of larger scale processes.5.5 Tolerances are guidelines based on current lab practices. This guide does not attempt to give detailed instructions due to the variety of possible panels and specimens that could be made. The tolerances should be used as a starting reference from which refinements can be made.1.1 This guide provides guidelines to facilitate the proper preparation of laminates and test specimens from fiber-reinforced organic matrix composite prepregs. The scope is limited to organic matrices and fiber reinforcement in unidirectional (tape) or orthagonal weave patterns. Other forms may require deviations from these general guidelines. Other processing techniques for test coupon preparation, for example, pultrusion, filament winding and resin-transfer molding, are not addressed.1.2 Specimen preparation is modeled as an 8-step process that is presented in Fig. 1 and Section 8. Laminate consolidation techniques are assumed to be by press or autoclave. This practice assumes that the materials are properly handled by the test facility to meet the requirements specified by the material supplier(s) or specification, or both. Proper test specimen identification also includes designation of process equipment, process steps, and any irregularities identified during processing.FIG. 1 8 Step Mechanical Test Data ModelNOTE 1: Material identification is mandatory. Continuous traceability of specimens is required throughout the process. Process checks (Appendix X4) may be done at the end of each step to verify that the step was performed to give a laminate or specimen of satisfactory quality. Steps 4 and 5 may be interchanged. For aramid fibers, step 5 routinely precedes step 4.  Steps 6, 7 and 8 may be interchanged.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Heat flow meter apparatus are being used to measure the center-of-panel portion of a vacuum insulation panel, which typically has a very high value of thermal resistivity (that is, equal to or greater than 90 m-K/W). As described in Specification C1484, the center-of-panel thermal resistivity is used, along with the panel geometry and barrier material thermal conductivity, to determine the effective thermal resistance of the evacuated panel.5.2 Using a heat flow meter apparatus to measure the thermal resistivity of non-homogenous and high thermal resistance specimens is a non-standard application of the equipment, and shall only be performed by qualified personnel with understanding of heat transfer and error propagation. Familiarity with the configuration of both the apparatus and the vacuum insulation panel is necessary.5.3 The center-of-panel thermal transmission properties of evacuated panels vary due to the composition of the materials of construction, mean temperature and temperature difference, and the prior history. The selection of representative values for the thermal transmission properties of an evacuated panel for a particular application must be based on a consideration of these factors and will not apply necessarily without modification to all service conditions.1.1 This test method covers the measurement of steady-state thermal transmission through the center of a flat rectangular vacuum insulation panel using a heat flow meter apparatus.1.2 Total heat transfer through the non-homogenous geometry of a vacuum insulation panel requires the determination of several factors, as discussed in Specification C1484. One of those factors is the center-of-panel thermal resistivity. The center-of-panel thermal resistivity is an approximation of the thermal resistivity of the core evacuated region.1.3 This test method is based upon the technology of Test Method C518 but includes modifications for vacuum insulation panel applications as outlined in this test method.21.4 This test method shall be used in conjunction with Practice C1045 and Practice C1058.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Typically, FT is used to identify flaws that occur in the manufacture of composite structures, or to identify and track flaws that develop during the service lifetime of the structure. Flaws detected with FT include delamination, disbonds, voids, inclusions, foreign object debris, porosity, or the presence of fluid that is in contact with the backside of the inspection surface. For example, the effect of variable ply number (or thickness), bridging, and an insert simulating delamination on heat flow into a composite is shown in Fig. 1 (left). Bridging (Fig. 1, right) or delaminated areas show up as hot spots due to discontinuous heat flow, causing heating to be localized close to the inspection surface. With dedicated signal processing and the use of representative test samples, characterization of flaw depth and size, or measurement of component thickness and thermal diffusivity, may be performed.FIG. 1 Variation of Heat Flow Into a Composite With Variable Ply Thickness (Scenarios 1, 3, and 4), Bridging (Scenario 2) And an Insert (Scenario 5) (Left), And a Post Layup Line Scan Showing Bright Spots Attributed to Bridging (Right) (Courtesy of NASA Langley Research Center)5.2 Since FT is based on the diffusion of thermal energy from the inspection surface of the specimen to the opposing surface (or the depth plane of interest), the practice requires that data acquisition allows sufficient time for this process to occur, and that at the completion of the acquisition process, the radiated surface temperature signal collected by the IR camera is strong enough to be distinguished from spurious IR contributions from background sources or system noise.5.3 This method is based on accurate detection of changes in the emitted IR energy emanating from the inspection surface during the cooling process. As the emissivity of the inspection surface falls below that of an ideal blackbody (blackbody emissivity = 1), the signal detected by the IR camera may include components that are reflected from the inspection surface. Most composite materials can be examined without special surface preparation. However, it may be necessary to coat low-emissivity, optically translucent inspection surfaces with an optically opaque, high-emissivity water-washable paint.5.4 This practice applies to the detection of flaws with aspect ratio greater than one.5.5 This practice is based on the thermal response of a specimen to a light pulse that is uniformly distributed over the plane of the inspection surface. To ensure that 1-dimensional heat flow from the surface into the sample is the primary cooling mechanism during the data acquisition period, the height and width dimensions of the heated area should be significantly greater than the thickness of the specimen, or the depth plane of interest. To minimize edge effects, the height and width dimensions of the heated area should be at least 5 % greater than the height and width dimensions of the inspection area.5.6 This practice applies to flat panels, or to curved panels where the angle between the line normal to the inspection surface and the IR camera optical axis is less than 30°. Analysis of regions with higher curvature can result in streaking artifacts due to nonuniform heating (Fig. 2).FIG. 2 Thermal Scan of a Complex Composite Shape (Left) Showing Less Effective Heating of a High Curvature Saddle-Region, Resulting in a Darker Diagonal Streak in the Thermographic Image (Right) (Courtesy of NASA Langley Research Center)1.1 This practice describes a procedure for detecting subsurface flaws in composite panels and repair patches using Flash Thermography (FT), in which an infrared (IR) camera is used to detect anomalous cooling behavior of a sample surface after it has been heated with a spatially uniform light pulse from a flash lamp array.1.2 This practice describes established FT test methods that are currently used by industry, and have demonstrated utility in quality assurance of composite structures during post-manufacturing and in-service examinations.1.3 This practice has utility for testing of polymer composite panels and repair patches containing, but not limited to, bismaleimide, epoxy, phenolic, poly(amide imide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricated geometries include uniaxial, cross ply, and angle ply laminates; as well as honeycomb core sandwich core materials.1.4 This practice has utility for testing of ceramic matrix composite panels containing, but not limited to, silicon carbide, silicon nitride, and carbon matrix and fibers.1.5 This practice applies to polymer or ceramic matrix composite structures with inspection surfaces that are sufficiently optically opaque to absorb incident light, and that have sufficient emissivity to allow monitoring of the surface temperature with an IR camera. Excessively thick samples, or samples with low thermal diffusivities, require long acquisition periods and yield weak signals approaching background and noise levels, and may be impractical for this technique.1.6 This practice applies to detection of flaws in a composite panel or repair patch, or at the bonded interface between the panel and a supporting sandwich core or solid substrate. It does not apply to discontinuities in the sandwich core, or at the interface between the sandwich core and a second panel on the far side of the core (with respect to the inspection apparatus).1.7 This practice does not specify accept-reject criteria and is not intended to be used as a basis for approving composite structures for service.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Specimens obtained in accordance with the procedure section of this practice may be used for preconstruction studies of shotcrete mixtures, to qualify nozzlemen and equipment, or for quality control, or compressive or flexural strength testing, during the progress of a project.1.1 This practice covers procedures for preparing test panels of dry-mix or wet-mix shotcrete and for testing specimens sawed or cored from the panels.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 The text of this standard references notes and footnotes that provide explanatory materials (excluding those in tables and figures) that shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM C901-18 Standard Specification for Prefabricated Masonry Panels Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers the structural design and quality control of fabrication for load-bearing and non-load-bearing prefabricated masonry panels. Structural design of panels shall be performed in accordance with the provisions of the applicable local building code and the requirements specified. A quality control test shall be made in accordance with the specified requirements.1.1 This specification covers the structural design and quality control of fabrication for load-bearing and non-load-bearing prefabricated masonry panels. Methods of prefabrication, field erection, and jointing are not covered in this specification.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice for preparation of test panels greatly increases the likelihood of achieving reproducible results in subsequent testing.1.1 This practice covers a procedure for the preparation of accelerated and outdoor weathering test panels of bituminous coatings. It is considered suitable for the preparation of film thicknesses in the range from 0.25 to 2.54 mm [0.010 to 0.100 in.].1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA's website, http://www.epa.gov/mercury/faq.htm, for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law.)1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The procedures described in this practice are intended to be used to establish design capacity (both strength and stiffness) values based on testing of OSB that, at a minimum, satisfies the relevant performance requirements of PS 2.4.2 Review and reassessment of values derived from this practice shall be conducted on a periodic basis. If a change is found to be significant, retesting or reevaluation, or both, in accordance with the procedures of this practice shall be considered.1.1 This practice covers the basis for code recognition of design capacities for OSB structural-use panels. Procedures are provided to establish or re-evaluate design capacities for OSB structural-use panels in flatwise and axial applications. Design capacities for OSB structural-use panels in edgewise applications, such as rim board, are outside the scope of this standard. Procedures for sampling and testing are also provided. Design values stated as capacity per unit dimension are to be regarded as standard. Design capacities developed in accordance with this practice are applicable to panels intended for use in dry in-service conditions.NOTE 1: This practice is based on ICC-ES Acceptance Criteria AC-182. Relative to the scope of AC-182, this practice is limited to OSB panels.NOTE 2: While this practice makes reference to PS 2, this practice applies similarly to products certified to other standards such as CAN/CSA O325.NOTE 3: OSB produced under PS 2 is rated with the “Exposure 1” bond classification. Exposure 1 panels covered by PS 2 are intended for dry use applications where the in-service equilibrium moisture content conditions are expected to be less than 16 %. Exposure 1 panels are intended to resist the effects of moisture due to construction delays, or other conditions of similar severity. Guidelines on use of OSB are available from manufacturers and qualified agencies.NOTE 4: PS 2-10 replaced the use of nominal thicknesses with a classification term known as Performance Category, which is defined in PS 2 as “A panel designation related to the panel thickness range that is linked to the nominal panel thickness designations used in the International Building Code (IBC) and International Residential Code (IRC).” Therefore, the PS 2 Performance Category should be considered equivalent to the term “nominal thickness” used within this standard.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E2004-18 Standard Test Method for Facing Cleavage of Sandwich Panels Active 发布日期 :  1970-01-01 实施日期 : 

4.1 This test method determines the cleavage force required to peel stiff facings from the core of sandwich panels, and is used to determine how well the facing is bonded to the core. Test Method D1781 only works well with flexible facings. As a guideline, the cleavage test method would work better on sandwich panels that have facings with a bending stiffness (EI) of greater than approximately 27.3 lb-in2/inch width (3.09 kN·mm 2/mm width). This converts to approximately 0.032 in. (0.81 mm) 6061 T6 aluminum alloy, 0.023 in. (0.57 mm) steel, and 0.046 in. (1.18 mm) fiberglass facings.1.1 This test method covers the determination of the cleavage force to peel stiff facings from sandwich panels.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 For a fabricated panel to be properly used, it must be adequately identified and packaged. It must be handled and stored in such a way that its physical property values are not degraded. Failure to follow good practice may result in the unnecessary failure of the fabricated panel in a properly designed application.4.2 This guide is not intended to replace project-specific storage, handling, identification, packaging, or installation requirements or quality assurance programs.1.1 This guide covers guidelines for the identification, packaging, handling, storage, and deployment of fabricated geomembrane panels. This guide is not to be considered as all encompassing since each project involving fabricated panels presents its own challenges and special conditions.1.2 This guide is intended to aid fabricators, suppliers, purchasers, and users of fabricated panels in the identification, packaging, handling, storage, and deployment of fabricated geomembrane panels.1.3 This guide is written for factory-fabricated geomembrane panels only. Other geosynthetics use Guide D4873/D4873M as their guide.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
158 条记录,每页 15 条,当前第 5 / 11 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页