微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 This test method may be used as an aid to design geotextile container systems that contain fine-grained, high water content slurries such as dredged materials to meet special environmental or operational requirements. This test is often used to demonstrate the efficacy of geotextile dewatering to regulatory agencies in determining the amount of dredged material sediment passing through a geotextile and the flow rate for specific high water content materials.5.2 The designer can use this test method to assess the quantity of fine-grained dredged material sediment that may pass through the geotextile container into the environment.5.3 This test method is intended for evaluation of a specific material, as the results will depend on the specific high water content slurry and geotextile evaluated and the location of the geotextile container below or above water. It is recommended that the user or a design representative perform the test because geotextile manufacturers are not typically equipped to handle or test fine-grained slurries.5.4 This test method provides a means of evaluating geotextile containers with different dredged materials or high water content materials under various conditions. The number of times this test is repeated depends on the users and the test conditions.5.5 This test method may not simulate site conditions and the user is cautioned to carefully evaluate how the results are applied.1.1 This test method is used to determine the flow rate of water and suspended solids through a geosynthetic permeable closed bag used to contain high water content slurry such as dredged material.1.2 The results for the water and sediment that pass through the geotextile bag are shown as liters of water per time period, and the percent total suspended solids in milligrams per liter or parts per million.1.3 The flow rate is the average rate of passage of a quantity of solids and water through the bag over a specific time period.1.4 This test method requires several pieces of specified equipment such as an integrated water sampler, analytical balance, geotextile bag, stand clear PVC pipes, testing frame, and clean containers to collect the decant water and a representative sample of high water content material from the proposed dredge area or slurry source.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Moisture is a ubiquitous and variable component of any biomass sample. Moisture is not considered a structural component of biomass and can change with storage and handling of biomass samples. The determination of the total solids content allows for the correction of biomass samples to an oven-dried solids mass that is constant for a particular sample.4.2 This procedure is not suitable for biomass samples that visibly change on heating to 105 °C, for example, unwashed acid-pretreated biomass still containing free acid.4.3 Some materials that contain large amount of free sugars or proteins will caramelize or brown under direct infrared heating elements used in Test Method B. Total solids in these materials should be done by Test Method A.1.1 This test method covers the determination of the amount of total solids remaining after drying a sample. Materials suitable for this procedure include samples prepared in accordance with Practice E1757 and extractive-free material prepared in accordance with Test Method E1690. For particulate wood fuels, Test Method E871 should be used.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
ASTM C1603-23 Standard Test Method for Measurement of Solids in Water Active 发布日期 :  1970-01-01 实施日期 : 

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the quantity of adhesive solids applied in a spreading or coating operation.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The comparative method of measurement of thermal conductivity is especially useful for engineering materials including ceramics, polymers, metals and alloys, refractories, carbons, and graphites including combinations and other composite forms of each.5.2 Proper design of a guarded-longitudinal system is difficult and it is not practical in a method of this type to try to establish details of construction and procedures to cover all contingencies that might offer difficulties to a person without technical knowledge concerning theory of heat flow, temperature measurements, and general testing practices. Standardization of this test method is not intended to restrict in any way the future development by research workers of new or methods or improved procedures. However, new or improved techniques must be thoroughly tested. Requirements for qualifying an apparatus are outlined in Section 10.1.1 This test method describes a steady state technique for the determination of the thermal conductivity, λ, of homogeneous-opaque solids (see Notes 1 and 2). This test method is applicable to materials with effective thermal conductivities in the range 0.2 < λ < 200 W/(m·K) over the temperature range between 90 K and 1300 K. It can be used outside these ranges with decreased accuracy.NOTE 1: For purposes of this technique, a system is homogeneous if the apparent thermal conductivity of the specimen, λA, does not vary with changes of thickness or cross-sectional area by more than ±5 %. For composites or heterogeneous systems consisting of slabs or plates bonded together, the specimen should be more than 20 units wide and 20 units thick, respectively, where a unit is the thickness of the thickest slab or plate, so that diameter or length changes of one-half unit will affect the apparent λA by less than ±5 %. For systems that are non-opaque or partially transparent in the infrared, the combined error due to inhomogeneity and photon transmission should be less than ±5 %. Measurements on highly transparent solids must be accompanied with infrared absorption coefficient information, or the results must be reported as apparent thermal conductivity, λA.NOTE 2: This test method may also be used to evaluate the contact thermal conductance/resistance of materials and composites.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 These test methods are intended as a quick and reliable procedure for measuring the titanium dioxide pigment content of aqueous slurries. Included with the pigment content in the percent solids are the various nonvolatile additives used in preparing a stable slurry. Because the aluminum and silica oxide treatments on the more highly treated titanium dioxide pigments may change somewhat with prolonged drying, in the oven method the solids of the slurry are considered dry after heating at 105°C for 60 to 65 min. The high temperature associated with the infrared moisture analyzer may also effect a change in the aluminum and silica oxide treatment on highly treated TiO2 products. Therefore, care in selection of time and temperature are critical to obtain accurate results with the infrared method. With the short duration of test associated with the microwave drying system, overdrying is not a concern.1.1 These test methods cover the determination of the weight percent of solids in aqueous slurries of titanium dioxide pigments by either the use of a gravity-convection oven (Method A), infrared radiation moisture analyzer (Method B), or a microwave drying system (Method C).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This test standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The specific gravity value is used in many phase relation equations to determine relative volumes of particle, water, and gas mixtures.5.2 The term soil particle typically refers to a naturally occurring mineral grain that is not readily soluble in water. Therefore, the specific gravity of soils that contain extraneous matter (such as cement, lime, and the like) or water-soluble material (such as salt) must be corrected for the precipitate that forms on the test specimen after drying. If the precipitate has a specific gravity less than the parent soil grains, the uncorrected test result will be too low. If the precipitate has a higher specific gravity, then the uncorrected test value will be too high.5.3 Heating during drying may diagenetically alter the structure of some clay minerals.3 Therefore caution should be exercised if the mineral composition of a clay test specimen is going to be determined after drying. It is possible to dry the test specimen at a lower temperature. However, the effect on water content4 and hence specific gravity should be investigated. In addition, some materials other than clay may be affected by drying at 110°C, such as gypsum, soils containing organics, fly ash containing residual coal, island sands. Test Method D2216 includes recommendations for drying gypsum using a lower temperature, such as 60°C.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the specific gravity of soil solids by means of a gas pycnometer. Particle size is limited by the dimensions of the test specimen container of the particular pycnometer being used.1.2 Test Method D854 may be used instead of or in conjunction with this test method for performing specific gravity tests on soils. Note that Test Method D854 does not require the specialized test apparatus needed by this test method. However, Test Method D854 may not be used if the test specimen contains matter that can readily dissolve in water, whereas this test method does not have that limitation.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3.1 For purposes of comparing a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.3.2 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.4 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard.1.4.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The converted slug unit is not given, unless dynamic (F = ma) calculations are involved.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide describes the use of a high solids content, cold liquid-applied elastomeric waterproofing membrane subject to intermittent hydrostatic pressure in a waterproofing system intended for installation on cast-in-place concrete vertical surfaces. Typical uses for these systems include planters and foundation walls with drainage system and others. The major components to be considered for a below grade building wall waterproofing system are the structural wall or substrate to be waterproofed, waterproofing membrane, membrane protection, and drainage system. The following considerations are detailed: (1) compatibility; (2) continuity; (3) substrate: strength, density and moisture content, admixtures, release and curing agents, finish, dryness, and joints; (4) waterproofing membrane: adhesion to substrate, terminations, and penetrations; (5) treatment and design of reinforced, unreinforced, and expansion joints; (6) protection course: impact resistance, compatibility, ancillary provisions, thermal insulation, and drainage composites; and (7) drainage system: drainage course, backfill, and drainage pipes. Illustrations of footing, treatment of vertical corners, and pipe penetration for the waterproofing system and treatment of reinforced and unreinforced joints are given.1.1 This guide describes the use of a high solids content, cold liquid-applied elastomeric waterproofing membrane that meets the performance criteria specified in Specification C836/C836M, subject to intermittent hydrostatic pressure in a waterproofing system intended for installation on vertical cast-in-place concrete surfaces.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The ability to qualitatively identify paint vehicles is useful for characterizing unknown or competitive coatings, for complaint investigations, and for in-process control.1.1 This test method covers the qualitative characterization or identification of separated paint vehicle solids by infrared spectroscopy within the limitations of infrared spectroscopy.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
121 条记录,每页 15 条,当前第 5 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页