4.1 Axially loaded tension specimens provide one of the most versatile methods of performing a stress-corrosion test because of the flexibility permitted in the choice of type and size of test specimen, stressing procedures, and range of stress levels.4.2 The uniaxial stress system is simple; hence, this test method is often used for studies of stress-corrosion mechanisms. This type of test is amenable to the simultaneous exposure of unstressed specimens (no applied load) with stressed specimens and subsequent tension testing to distinguish between the effects of true stress corrosion and mechanical overload (2). Additional considerations in regard to the significance of the test results and their interpretation are given in Sections 6 and 10.4.3 Wide variations in test results may be obtained for a given material and specimen orientation with different specimen sizes and stressing procedures. This consideration is significant especially in the standardization of a test procedure for interlaboratory comparisons or quality control.1.1 This practice covers procedures for designing, preparing, and using ASTM standard tension test specimens for investigating susceptibility to stress-corrosion cracking. Axially loaded specimens may be stressed quantitatively with equipment for application of either a constant load, constant strain, or with a continuously increasing strain.1.2 Tension test specimens are adaptable for testing a wide variety of product forms as well as parts joined by welding, riveting, or various other methods.1.3 The exposure of specimens in a corrosive environment is treated only briefly because other standards are being prepared to deal with this aspect. Meanwhile, the investigator is referred to Practices G35, G36, G37, and G44, and to ASTM Special Technical Publication 425 (1).21.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The spiral contractometer, properly used, will give reproducible results (see 9.5) over a wide range of stress values. Internal stress limits with this method can be specified for use by both the purchaser and the producer of plated or electroformed parts.5.2 Plating with large tensile stresses will reduce the fatigue strength of a product made from high-strength steel. Maximum stress limits can be specified to minimize this. Other properties affected by stress include corrosion resistance, dimensional stability, cracking, and peeling.5.3 In control of electroforming solutions, the effects of stress are more widely recognized, and the control of stress is usually necessary to obtain a usable electroform. Internal stress limits can be determined and specified for production control.5.4 Internal stress values obtained by the spiral contractometer do not necessarily reflect the internal stress values found on a part plated in the same solution. Internal stress varies with many factors, such as coating thickness, preparation of substrate, current density, and temperature, as well as the solution composition. Closer correlation is achieved when the test conditions match those used to coat the part.1.1 This test method covers the use of the spiral contractometer for measuring the internal stress of metallic coatings as produced from plating solutions on a helical cathode. The test method can be used with electrolytic and autocatalytic deposits.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 All porcelain enamel coatings or glass coatings are by necessity under some degree of compression at room temperature. The desired degree of compression or stress depends upon the type of ware and the end use of the item. Some method of determining relative compressive stress of enamels is necessary to establish the suitability of an enamel for a proposed application.1.1 This test method covers the measurement of the compressive stresses (Note 1) developed by fired porcelain enamels using the loaded-beam method.NOTE 1: Although some may interpret the calculations that are used in this test method as indicating compressive load, it is commonly referred to as compressive stress within the porcelain enamel industry.1.2 This test method is limited to the use of the loaded-beam method. However, this method includes charts (Fig. 1 and Fig. 2) that provide for conversion of loaded-beam test results to warp and ring stress values.FIG. 2 Conversion Chart for Loaded-Beam Stress to Ring Stress1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
3.1 Because of the tendency of prestressed titanium alloy parts to crack if heated while in contact with certain chemical reagents, it is necessary to ensure that cleaning and maintenance materials will not initiate stress corrosion of titanium alloys under controlled conditions. For test specimens, two common titanium alloys are selected, one that is very susceptible (AMS 4916 or AMS 4919) and one that is not very susceptible (AMS 4911) to stress corrosion cracking.1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts.1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures.1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration.1.4 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 5.3 and 5.6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The bent-beam specimen is designed for determining the stress-corrosion behavior of alloy sheets and plates in a variety of environments. The bent-beam specimens are designed for testing at stress levels below the elastic limit of the alloy. For testing in the plastic range, U-bend specimens should be employed (see Practice G30). Although it is possible to stress bent-beam specimens into the plastic range, the stress level cannot be calculated for plastically-stressed three- and four-point loaded specimens as well as the double-beam specimens. Therefore, the use of bent-beam specimens in the plastic range is not recommended for general use.1.1 This practice covers procedures for designing, preparing, and using bent-beam stress-corrosion specimens.1.2 Different specimen configurations are given for use with different product forms, such as sheet or plate. This practice is applicable to specimens of any metal that are stressed to levels less than the elastic limit of the material, and therefore, the applied stress can be accurately calculated or measured (see Note 1). Stress calculations by this practice are not applicable to plastically stressed specimens.NOTE 1: It is the nature of these practices that only the applied stress can be calculated. Since stress-corrosion cracking is a function of the total stress, for critical applications and proper interpretation of results, the residual stress (before applying external stress) or the total elastic stress (after applying external stress) should be determined by appropriate nondestructive methods, such as X-ray diffraction (1).21.3 Test procedures are given for stress-corrosion testing by exposure to gaseous and liquid environments.1.4 The bent-beam test is best suited for flat product forms, such as sheet, strip, and plate. For plate material the bent-beam specimen is more difficult to use because more rugged specimen holders must be built to accommodate the specimens. A double-beam modification of a four-point loaded specimen to utilize heavier materials is described in 10.5.1.5 The exposure of specimens in a corrosive environment is treated only briefly since other practices deal with this aspect, for example, Practices D1141, G30, G36, G44, G50, and G85. The experimenter is referred to ASTM Special Technical Publication 425 (2).1.6 The bent-beam practice generally constitutes a constant strain (deflection) test. Once cracking has initiated, the state of stress at the tip of the crack as well as in uncracked areas has changed, and therefore, the known or calculated stress or strain values discussed in this practice apply only to the state of stress existing before initiation of cracks.1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (For more specific safety hazard information see Section 7 and 12.1.)1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 702元 加购物车
4.1 The hot salt test as applied to metals is utilized as a secondary design consideration indicator, as cracking has been shown to occur in laboratory tests simulating possible service conditions. Although limited evidence exists linking this phenomenon to actual service failures, cracking under stress in a hot salt environment should be recognized as a potential design controlling factor.4.2 The hot salt test is not to be misconstrued as being related to the stress corrosion cracking of materials in other environments. It is considered solely as a test in an environment that might be encountered in service.4.3 Because hot salt cracking under stress is considered a secondary design consideration and service failures have not been attributed solely to this phenomenon, manufacturing processes will be optimized or alloying changes will be made only after consideration is given to primary design factors such as creep resistance of a given high temperature alloy. The usefulness of the test lies rather in limiting maximum operating temperatures and stress levels or categorizing different alloys as to susceptibility, or both, if it is found that hot salt damage may accelerate failure by creep, fatigue, or rupture.4.4 Finally, the test does not lend itself to the utilization of pre-cracked specimens because cracking reinitiates at any salt-metal-air interface, resulting generally in many small cracks which extend independently. For this reason, specimens that are recommended for utilization in routine testing are of the smooth specimen category.1.1 This practice covers procedures for testing metals for embrittlement and cracking susceptibility when exposed under stress to a hot salt environment. This practice can be used for testing all metals for which service conditions dictate the need for such information. The test procedures described herein are generally applicable to all metal alloys; required adjustments in environmental variables (temperature, stress) to characterize a given materials system should be made. This practice describes the environmental conditions and degree of control required, and suggests means for obtaining this desired control.1.2 This practice can be used both for alloy screening for determination of relative susceptibility to embrittlement and cracking, and for the determination of time-temperature-stress threshold levels for onset of embrittlement and cracking. However, certain specimen types are more suitable for each of these two types of characterizations.NOTE 1: This practice relates solely to the performance of the exposure test. No detailed description concerning preparation and analysis of specimen types is offered. However, the optimum sample design may be one that uses the same type of stress encountered in service loading situations. Standards describing principal types of stress corrosion specimens, their preparation, and analysis, include Practices G30, G38, and G39.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (For more specific safety hazard statements see Section 8.)1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 When an engine oil is cooled, the rate and duration of cooling can affect its yield stress and viscosity. In this laboratory test, a fresh engine oil is slowly cooled through a temperature range where wax crystallization is known to occur, followed by relatively rapid cooling to the final test temperature. These laboratory test results have predicted as failures the known engine oils that have failed in the field because of lack of oil pumpability.4 These documented field failing oils all consisted of oils normally tested at –25 °C. These field failures are believed to be the result of the oil forming a gel structure that results in either excessive yield stress or viscosity of the engine oil, or both.5.2 Cooling Profiles: 5.2.1 For oils to be tested at −20 °C or colder, Table X1.1 applies. The cooling profile described in Table X1.1 is based on the viscosity properties of the ASTM Pumpability Reference Oils (PRO). This series of oils includes oils with normal low-temperature flow properties and oils that have been associated with low-temperature pumpability problems (1-5).5 Significance for the −35 °C and −40 °C temperature profiles is based on the data collected from the “Cold Starting and Pumpability Studies in Modern Engines” conducted by ASTM (6, 7).5.2.2 For oils to be tested at −15 °C or −10 °C, Table X1.2 applies. No significance has been determined for this temperature profile because of the absence of appropriate reference oils. Similarly, precision of the test method using this profile for the −10 °C test temperature is unknown. The temperature profile of Table X1.2 is derived from the one in Table X1.1 and has been moved up in temperature, relative to Table X1.1, in consideration of the expected higher cloud points of the viscous oils tested at −15 °C and −10 °C.1.1 This test method covers the measurement of the yield stress and viscosity of engine oils after cooling at controlled rates over a period exceeding 45 h to a final test temperature between –10 °C and –40 °C. The precision is stated for test temperatures from –40 °C to –15 °C. The viscosity measurements are made at a shear stress of 525 Pa over a shear rate of 0.4 s–1 to 15 s–1. The viscosity as measured at this shear stress was found to produce the best correlation between the temperature at which the viscosity reached a critical value and borderline pumping failure temperature in engines.1.2 This test method contain two procedures: Procedure A incorporates several equipment and procedural modifications from Test Method D4684–02 that have shown to improve the precision of the test, while Procedure B is unchanged from Test Method D4684–02. Additionally, Procedure A applies to those instruments that utilize thermoelectric cooling technology or direct refrigeration technology of recent manufacture for instrument temperature control. Procedure B can use the same instruments used in Procedure A or those cooled by circulating methanol.1.3 Procedure A of this test method has precision stated for a yield range from less than 35 Pa to 210 Pa and apparent viscosity range from 4300 mPa·s to 270 000 mPa·s. The test procedure can determine higher yield stress and viscosity levels.1.4 This test method is applicable for unused oils, sometimes referred to as fresh oils, designed for both light duty and heavy duty engine applications. It also has been shown to be suitable for used diesel and gasoline engine oils. The applicability to petroleum products other than engine oils has not been determined.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5.1 Exception—This test method uses the SI based unit of milliPascal second (mPa·s) for viscosity which is equivalent to, centiPoise (cP).1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 Non-isothermal stress relaxation, also known as temperature scanning stress relaxation, performed at a specific heating rate, delivers a set of parameters useful to specify the properties of thermo-plastic elastomers. It can also characterize the deterioration of the cross-linked rubber network in a reasonable testing time of a few hours.5.2 Stress relaxation tests are typically performed as time-dependent experiments at constant strain and temperature. It is known that temperature has a strong influence on the relaxation time of rubber. When evaluating ageing behavior such as deterioration of the network, a reliable test using isothermal stress relaxation requires extremely long testing times, for example, days or weeks depending on the application.1.1 This test method is used to determine the non-isothermal stress relaxation, also known as temperature scanning stress relaxation (TSSR). Stress relaxation is a characteristic behavior of rubber materials.1.2 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 The processing behavior (processability) of rubber or rubberlike materials is closely related to their viscoelastic properties. The viscoelastic properties as well as the mechanical properties are related to the polymeric, including macromolecular and micromolecular structure. Therefore, a determination of the viscoelasticity of a material will provide information to predict processing and service performance.5.2 Stress relaxation testing provides a methodology for investigating the viscoelasticity of rubber or rubberlike materials. Certain structural characteristics that have been demonstrated to be evaluated by this test method are: (1) average molecular weight, (2) molecular weight distribution, (3) linearity or chain branching, (4) gel content, and (5) monomer ratio.5.3 This practice is intended to describe various methods of measuring the stress relaxation properties of raw rubber, unvulcanized rubber compounds, or thermoplastic elastomers for determining the processability of these materials through viscoelastic measurements. Factory performance characteristics that this methodology may correlate with include die swell or shrinkage, extrusion rate, mill banding, carbon black incorporation time, and mold flow.1.1 This practice covers several different techniques for determining the stress relaxation characteristics of rubber and rubberlike materials and for the possible interconversion of this stress relaxation information into dynamic mechanical properties.1.2 The techniques are intended for materials having stress relaxation moduli in the range of 103 to 108 Pa (0.1 to 1.5 × 104 psi) and for test temperatures from 23 °C to 225 °C (73 °F to 437 °F). Not all measuring apparatus may be able to accommodate the entire ranges. These techniques are also intended for measurement of materials in their rubbery or molten states, or both.1.3 Differences in results will be found among the techniques. Because of these differences, the test report needs to include the technique and the conditions of the test. This information will allow for resolving any issues pertaining to the test measurements.1.4 The generalized descriptions of apparatus are based on the measurement of force as a function of time. Mathematical treatment of that relationship produces information that can be representative of material properties. Mathematical transformation of the force measurements will first yield stress relaxation moduli with subsequent transformation producing dynamic mechanical properties.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 The stress-strain properties of unvulcanized rubber (either in a compound or in the raw state) are important to certain processing operations in the rubber industry. These unvulcanized rubber properties are frequently referred to as “green strength.”5.2 Green strength is determined primarily by the physical and chemical characteristics of polymers, such as molecular weight, tendency to crystallize, degree of branching, and so forth. It is also related to the compound formulation, particularly filler and plasticizer content, and the presence of peptizers. Green strength can be a good indication of processing behavior. It is a particularly important characteristic for all processing operations in which elongation predominates.5.3 Green strength is dependent on the test piece preparation, rate of extension, and test temperature. Therefore, a single-point method cannot be expected to give correlation between green strength and processing behavior over the whole range of processing conditions.1.1 This test method covers methods to evaluate a characteristic of raw rubber or unvulcanized rubber compounds that is designated as green strength. This special strength property for uncured rubbers is an important processing performance attribute in rubber product manufacturing.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车