微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The determination of class group composition of aviation turbine fuels is useful for evaluating quality and expected performance, as well as compliance with various industry specifications and governmental regulations.1.1 This test method is a standard procedure for the determination of total aromatic, monoaromatic and diaromatic content in aviation turbine fuels using gas chromatography and vacuum ultraviolet detection (GC-VUV).1.2 Concentrations of compound classes and certain individual compounds are determined by percent mass or percent volume.1.2.1 This test method is developed for testing aviation turbine engine fuels having concentration test results ranging from 0.487 % to 27.876 % by volume total aromatic compounds, 0.49 % to 27.537 % by volume monoaromatics and 0.027 % to 2.523 % by volume diaromatics.NOTE 1: Samples with a final boiling point greater than 300 °C that contain triaromatics and higher polyaromatic compounds are not determined by this test method.1.3 Individual hydrocarbon components are not reported by this test method, however, any individual component determinations are included in the appropriate summation of the total aromatic, monoaromatic or diaromatic groups.1.3.1 Individual compound peaks are typically not baseline-separated by the procedure described in this test method, that is, some components will coelute. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.4 This test method has been tested for aviation turbine engine fuels; this test method may apply to other hydrocarbon streams boiling between hexane (68 °C) and heneicosane (356 °C), including sustainable alternative jet fuels but has not been extensively tested for such applications.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 These test methods determine the concentration of lead (from alkyl addition) in gasoline. These alkyl additives improve the antiknock properties.4.2 Test Method C is used to ensure compliance of trace lead as required by federal regulations for lead-free gasoline (40 CFR Part 80).4.3 Test Method D is used to determine the concentration of manganese in aviation gasoline.1.1 These test methods cover the determination of lead and manganese gasoline additives content by X-Ray Fluorescence Spectroscopy (XRF). These test methods cover the determination of the total lead content of a gasoline within the following concentration ranges:0.010 g Pb/US gal to 5.0 g Pb/US gal0.012 g Pb/UK gal to 6.0 g Pb/UK gal0.0026 g Pb/L to 1.32 g Pb/Land total manganese content of aviation gasoline within the concentration range of 25 mg Mn/L to 250 mg Mn/L.1.1.1 Test Methods A and B cover the range of 0.10 g Pb/US gal to 5.0 g Pb/US gal. Test Method C covers the range of 0.010 g Pb/US gal to 0.50 g Pb/US gal.1.1.2 These Methods A, B, and C are applicable to gasoline containing lead additives. These test methods compensate for normal variation in gasoline composition and are independent of lead alkyl type.1.1.3 Test Method D is applicable to aviation gasoline containing manganese additives.1.2 Test Method A (formerly in withdrawn Test Method D2599)—Sections 5 – 10.Test Method B (formerly in withdrawn Test Method D2599)—Sections 11 – 16.Test Method C (formerly in withdrawn Test Method D3229)—Sections 17 – 23.Test Method D—Sections 24 – 29.1.3 The values stated in SI are to be regarded as the standard. For reporting purposes the values stated in grams per U.S. gallon are the preferred units in the United States. Note that in other countries, other units can be preferred.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Sections 5, 6, 11, and 18.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Alcohols and ethers are added to gasoline to produce a reformulated lower emissions gasoline. Alcohols and ethers may also be added to gasoline to increase the octane number. Type and concentration of various oxygenates are specified and regulated to ensure acceptable commercial gasoline quality. Driveability, vapor pressure, phase separation, and evaporative emissions are some of the concerns associated with oxygenated fuels.5.2 This test method is faster, simpler, less expensive and more portable than current methods.5.3 This test method may be applicable for quality control in the production of gasoline.5.4 This test method is not suitable for testing for compliance with federal regulations.35.5 False positive readings for some of the samples tested in the round robin were sometimes observed. As only extreme base gasolines were tested in the round robin, no definitive statement can be made as to the expected frequency or magnitude of false positives expected in a wider range of base gasolines.1.1 This test method covers the determination of methanol, ethanol, tert-butanol, methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and diisopropyl ether (DIPE) in gasoline by infrared spectroscopy. The test method is suitable for determining methanol from 1.7 % to 5.5 % by mass, ethanol from 1.5 % to 10 % by mass, tert-butanol from 1.6 % to 12 % by mass, DIPE from 1.2 % to 17 % by mass, MTBE from 2.0 % to 16.4 % by mass, ETBE from 2.0 % to 18.5 % by mass, and TAME from 1.5 % to 18.5 % by mass.1.2 This test method is applicable to oxygenate(s) in gasoline singularly or in multiple mixtures hereof according to the oxygenates and mass percent ranges given in 1.1.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Interpretation of static SIMS mass spectral data can be complicated due to the complexity and density of data obtained and therefore, variability often occurs when users are not consistent in their methods of data interpretation This guide is intended to help avoid these inconsistencies, by discussing the most commonly observed scenarios in static SIMS analysis and how to approach these scenarios.This guide can be used as a training guide for employees or students, or both.1.1 This guide provides time-of-flight secondary ion mass spectrometry (ToF-SIMS) users with a method for forms of interpretation of mass spectral data. This guide is applicable to most ToF-SIMS instruments and may or may not be applicable to other forms of secondary icon mass spectrometry (SIMS).1.2 This guide does not purport to address methods of sample preparation. It is the responsibility of the user to adhere to strict sample preparation procedures in order to minimize contamination and optimize signals. See Guide E1078 and ISO 18116 for sample preparation guidelines.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 General Utility: 5.1.1 It is necessary to know the hydroxyl number of polyols in order to formulate polyurethane systems.5.1.2 This practice is suitable for research, quality control, specification testing, and process control.5.2 Limitations: 5.2.1 Factors affecting the NIR spectra of the analyte polyols need to be determined before a calibration procedure is started. Chemical structure, interferences, any nonlinearities, the effect of temperature, and the interaction of the analyte with other sample components such as catalyst, water and other polyols needs to be understood in order to properly select samples that will model those effects which cannot be adequately controlled.5.2.2 Calibrations are generally considered valid only for the specific NIR instrument used to generate the calibration. Using different instruments (even when made by the same manufacturer) for calibration and analysis can seriously affect the accuracy and precision of the measured hydroxyl number. Procedures used for transferring calibrations between instruments are problematic and are to be utilized with caution following the guidelines in Section 16. These procedures generally require a completely new validation and statistical analysis of errors on the new instrument.5.2.3 The analytical results are statistically valid only for the range of hydroxyl numbers used in the calibration. Extrapolation to lower or higher hydroxyl values can increase the errors and degrade precision. Likewise, the analytical results are only valid for the same chemical composition as used for the calibration set. A significant change in composition or contaminants can also affect the results. Outlier detection, as discussed in Practices E1655, is a tool that can be used to detect the possibility of problems such as those mentioned above.1.1 This standard covers a practice for the determination of hydroxyl numbers of polyols using NIR spectroscopy.1.2 Definitions, terms, and calibration techniques are described. Procedures for selecting samples, and collecting and treating data for developing NIR calibrations are outlined. Criteria for building, evaluating, and validating the NIR calibration model are also described. Finally, the procedure for sample handling, data gathering and evaluation are described.1.3 The implementation of this standard requires that the NIR spectrometer has been installed in compliance with the manufacturer's specifications.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This standard is equivalent ISO 15063.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Aromatic content is a key characteristic of hydrocarbon oils and can affect a variety of properties of the oil including its boiling range, viscosity, stability, and compatibility of the oil with polymers.5.2 Existing methods for estimating aromatic contents use physical measurements, such as refractive index, density, and number average molecular weight (see Test Method D3238) or infrared absorbance4 and often depend on the availability of suitable standards. These NMR procedures do not require standards of known aromatic hydrogen or aromatic carbon contents and are applicable to a wide range of hydrocarbon oils that are completely soluble in chloroform at ambient temperature.5.3 The aromatic hydrogen and aromatic carbon contents determined by this test method can be used to evaluate changes in aromatic contents of hydrocarbon oils due to changes in processing conditions and to develop processing models in which the aromatic content of the hydrocarbon oil is a key processing indicator.1.1 This test method covers the determination of the aromatic hydrogen content (Procedures A and B) and aromatic carbon content (Procedure C) of hydrocarbon oils using high-resolution nuclear magnetic resonance (NMR) spectrometers. Applicable samples include kerosenes, gas oils, mineral oils, lubricating oils, coal liquids, and other distillates that are completely soluble in chloroform at ambient temperature. For pulse Fourier transform (FT) spectrometers, the detection limit is typically 0.1 mol % aromatic hydrogen atoms and 0.5 mol % aromatic carbon atoms. For continuous wave (CW) spectrometers, which are suitable for measuring aromatic hydrogen contents only, the detection limit is considerably higher and typically 0.5 mol % aromatic hydrogen atoms.1.2 The reported units are mole percent aromatic hydrogen atoms and mole percent aromatic carbon atoms.1.3 This test method is not applicable to samples containing more than 1 mass % olefinic or phenolic compounds.1.4 This test method does not cover the determination of the percentage mass of aromatic compounds in oils since NMR signals from both saturated hydrocarbons and aliphatic substituents on aromatic ring compounds appear in the same chemical shift region. For the determination of mass or volume percent aromatics in hydrocarbon oils, chromatographic, or mass spectrometry methods can be used.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.2 and 7.3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The present and growing international governmental requirements to add Fatty Acid Methyl Esters (FAME) to diesel fuel has had the unintended side-effect of leading to potential FAME contamination of fuels in multi-fuel transport facilities such as cargo tankers and pipelines, and industry wide concerns. This has led to a requirement to measure contamination levels in diesel and other fuels to assist custody transfer issues.5.2 Analytical methods have been developed with the capability of measuring down to <5 mg/kg levels of FAME in aviation turbine fuel (AVTUR), however these are complex, and require specialized personnel and laboratory facilities. This Rapid Screening method has been developed for use in the supply chain by non-specialized personnel to cover the range of 20 mg/kg to 500 000 mg/kg (0.002 % to 50 %).5.3 A similar procedure, Test Method D7797, is available for AVTUR in the range 10 mg/kg to 150 mg/kg. Test Method D7797 uses the same apparatus, with a specific model developed for AVTUR.1.1 This test method specifies a rapid screening method using flow analysis by Fourier Transform Infrared (FA-FTIR) spectroscopy with partial least squares (PLS) processing for the quantitative determination of the fatty acid methyl ester (FAME) contamination of middle distillates, in the range of 20 mg/kg to 1000 mg/kg, and of middle distillates and residual fuels, following dilution, for levels above 0.1 %.NOTE 1: Annex A2 describes a dilution procedure to significantly expand the measurement range above 1000 mg/kg for distillates and to enable measurement of residual oilsNOTE 2: This test method detects all FAME components, with peak IR absorbance at approximately 1749 cm-1 and C8 to C22 molecules, as specified in standards such as D6751 and EN 14214. The accuracy of the test method is based on the molecular mass of C16 to C18 FAME species; the presence of other FAME species with different molecular masses could affect the accuracy.NOTE 3: Additives such as antistatic agents, antioxidants, and corrosion inhibitors are measured with the FAME by the FTIR spectrometer. However any potential interference effects of these additives are eliminated by the flow analysis processing.NOTE 4: The scope of this test method does not include aviation turbine fuel which is addressed by Test Method D7797.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The permissible level of heavy metals in certain coatings is specified by governmental regulatory agencies. This test method provides a fully documented procedure for determining low concentrations of lead, cadmium, and cobalt present in both water and solvent-reducible coatings to determine compliance.1.1 This test method covers the determination of lead2 contents between 0.01 and 5 %, cadmium contents between 50 and 150 ppm (mg/kg), and cobalt contents between 50 and 2000 ppm (mg/kg) present in the nonvolatile portion of liquid coatings or contained in dried films. There is no reason to believe that higher levels of all three elements could not be determined by this test method, provided that appropriate dilutions and adjustments in specimen size and reagent quantities are made.1.2 Only pigmented coatings were used for evaluating this test method, but there is no reason to believe that varnishes and lacquers could not be analyzed successfully, provided that appropriate precautions are taken.1.3 This test method is not applicable to the determination of lead in samples containing antimony pigments (low recoveries are obtained).1.4 If lead is present in the sample to be analyzed in the form of an organic lead compound at a concentration greater than 0.1 %, small losses of lead may occur, resulting in slightly poorer precision than shown in Section 12.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
221 条记录,每页 15 条,当前第 8 / 15 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页