微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 General—Most thickness gauges are not applicable to all combinations of coating-substrate thicknesses and materials. The limitations of a particular instrument are generally delineated by its manufacturer. The substrate material and coating combination to be measured as well as the inherent variations in the substrate and coating shall be reviewed prior to selecting the instrument to be used and the measurement accuracy required.4.2 Magnetic—Magnetic-type gauges measure either magnetic attraction between a magnet and a coating or its substrate, or reluctance of a magnetic flux path passing through the coating and substrate. These gauges are designed to measure thickness of a nonmagnetic coating on a magnetic substrate. Some of them will also measure thickness of nickel coatings on a magnetic or nonmagnetic substrate.64.3 Eddy Current—Eddy current-type thickness gauges are electronic instruments that measure variations in impedance of an eddy current inducing coil caused by coating thickness variations. They can only be used if the electrical conductivity of the coating differs significantly from that of the substrate.4.4 Accuracy—The accuracy of a measurement depends on the instrument, the foils, its calibration and standardization, and its operating conditions. The accuracy is also affected by the interferences listed in Section 5, such as part geometry (curvature), magnetic permeability, electrical conductivity, and surface roughness.NOTE 2: This practice under ideal conditions may allow the coating thickness to be determined within ±10 % of its true thickness or to within ±2.5 μm (or ±0.0001 in.), whichever is the greater. (See exceptions in Appendix X2.)1.1 This practice covers the use of magnetic- and eddy current-type thickness instruments (gauges) for nondestructive thickness measurement of a coating on a metal (that is, electrically conducting) substrate. The substrate may be ferrous or nonferrous. The coating or plating being measured may be electrically conducting or insulating as well as ferrous or non-ferrous.1.2 More specific uses of these instruments are covered by Practice D7091 and the following test methods issued by ASTM: Test Methods B244, B499, and B530.1.3 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 Measurements made in accordance with this practice will be in compliance with the requirements of ISO 2178 as printed in 1982.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

4.1 This test method is useful for the direct measurement of the thicknesses of metallic coatings and of individual layers of composite coatings, particularly for layers thinner than normally measured with the light microscope.4.2 This test method is suitable for acceptance testing.4.3 This test method is for the measurement of the thickness of the coating over a very small area and not of the average or minimum thickness per se.4.4 Accurate measurements by this test method generally require very careful sample preparation, especially at the greater magnifications.4.5 The coating thickness is an important factor in the performance of a coating in service.1.1 This test method covers the measurement of metallic coating thicknesses by examination of a cross section with a scanning electron microsope (SEM).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 This test method was designed to give the manufacturer of loose-fill insulation products a way of determining what the initial installed thickness should be in a horizontal open attic for pneumatic applications.5.2 The installed thickness value developed by this test method is intended to provide guidance to the installer in order to achieve a minimum mass/unit area for a given R-value.5.3 For the purpose of product design, testing should be done at a variety of R-values. At least three R-values should be used: the lowest R-value on the product label, the highest R-value on the product label, and an R-value near the midpoint of the R-value range.NOTE 1: For quality control purposes, testing may be done at one R-value of R-19 (h×ft 2×°F/Btu) or higher.5.4 Specimens are blown in a manner consistent with the intended installation procedure. Blowing machine settings should be representative of those typically used for field application with that machine.5.5 The material blown for a given R-value as part of the installed thickness test equals the installed mass/unit area times the test chamber area. This mass can be calculated from information provided on the package label at the R-value prescribed.1.1 This test method covers determination of the installed thickness of pneumatically applied loose-fill building insulations prior to settling by simulating an open attic with horizontal blown applications.1.2 This test method is a laboratory procedure for use by manufacturers of loose-fill insulation for product design, label development, and quality control testing. The apparatus used produces installed thickness results at a given mass/unit area.1.3 This test method is not the same as the design density procedures described in Test Methods C520 or Specifications C739 or C764.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

6.1 This test method permits accurate and nondestructive thickness determination of bound pavement layers. As such, this test method is widely applicable as a pavement system-assessment technique.6.2 Although this test method, under the right conditions, can be highly accurate as a layer-thickness indicator, consistently reliable interpretation of the received radar signal to determine layer thicknesses can be performed only by an experienced data analyst. Such experience can be gained through use of the system and through training courses supplied by various equipment manufacturers or consulting companies. Alternatively, the operator may wish to use computer software to automatically track the layer boundaries and layer thickness, where applicable.1.1 This test method covers the nondestructive determination of the thickness of bound pavement layers using ground penetrating radar (GPR).1.2 This test method may not be suitable for application to pavements which exhibit increased conductivity due to the increased attenuation of the electromagnetic signal. Examples of scenarios which may cause this are: extremely moist or wet (saturated) pavements if free electrolytes are present and slag aggregate with high iron content.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 11.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

4.1 The procedure described in this test method is designed to provide a method by which the coating weight of zirconium treatments on metal substrates may be determined.4.2 This test method is applicable for determination of the total coating weight and the zirconium coating weight of a zirconium-containing treatment.1.1 This test method covers the use of X-ray fluorescence (XRF) spectrometry for the determination of the mass of zirconium (Zr) coating weight per unit area of metal substrates.1.2 Coating treatments can also be expressed in units of linear thickness provided that the density of the coating is known, or provided that a calibration curve has been established for thickness determination using standards with treatment matching this of test specimens to be analyzed. For simplicity, the method will subsequently refer to the determination expressed as coating weight.1.3 XRF is applicable for the determination of the coating weight as zirconium or total coating weight of a zirconium containing treatment, or both, on a variety of metal substrates.1.4 The maximum measurable coating weight for a given coating is that weight beyond which the intensity of the characteristic X-ray radiation from the coating or the substrate is no longer sensitive to small changes in weight.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 Certain properties, namely thickness and density, of SFRM are basic. It is the intent of these test methods to provide procedures to determine these properties.1.1 These test methods cover procedures for determining thickness and density of sprayed fire-resistive material (SFRM) used in structural assemblies. These include sprayed fiber and cementitious types. The test methods are applicable to both laboratory and field procedures, as indicated in Section 7.1.2 These test methods require the application of SFRM in accordance with the manufacturers’ published instructions. The apparatus, materials, and procedure used to apply the SFRM for laboratory tests shall be the same as is used for the construction of either of the test assemblies described in Test Methods E119 and E84.1.3 There is no intent in these test methods to establish levels of performance.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏
365 条记录,每页 15 条,当前第 8 / 25 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页