微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This guide is intended for use in evaluating the performance of field-portable electroanalytical or spectrophotometric devices for lead determination, or both.4.2 Desired performance criteria for field-based extraction procedures are provided.4.3 Performance parameters of concern may be determined using protocols that are referenced in this guide.4.4 Example reference materials to be used in assessing the performance of field-portable lead analyzers are listed.4.5 Exhaustive details regarding quality assurance issues are outside the scope of this guide. Applicable quality assurance aspects are dealt with extensively in references that are cited in this guide.1.1 This guide provides guidelines for determining the performance of field-portable quantitative lead analysis instruments.1.2 This guide applies to field-portable electroanalytical and spectrophotometric (including reflectance and colorimetric) analyzers.1.3 Sample matrices of concern herein include paint, dust, soil, and airborne particles.1.4 This guide addresses the desired performance characteristics of field-based sample extraction procedures for lead, as well as on-site extraction followed by field-portable analysis.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 618元 / 折扣价: 526 加购物车

在线阅读 收 藏

3.1 Electrochemical corrosion rate measurements often provide results in terms of electrical current. Although the conversion of these current values into mass loss rates or penetration rates is based on Faraday’s Law, the calculations can be complicated for alloys and metals with elements having multiple valence values. This practice is intended to provide guidance in calculating mass loss and penetration rates for such alloys. Some typical values of equivalent weights for a variety of metals and alloys are provided.3.2 Electrochemical corrosion rate measurements may provide results in terms of electrical resistance. The conversion of these results to either mass loss or penetration rates requires additional electrochemical information. Some approaches for estimating this information are given.3.3 Use of this practice will aid in producing more consistent corrosion rate data from electrochemical results. This will make results from different studies more comparable and minimize calculation errors that may occur in transforming electrochemical results to corrosion rate values.1.1 This practice covers the providing of guidance in converting the results of electrochemical measurements to rates of uniform corrosion. Calculation methods for converting corrosion current density values to either mass loss rates or average penetration rates are given for most engineering alloys. In addition, some guidelines for converting polarization resistance values to corrosion rates are provided.1.2 The values stated in SI units are to be regarded as standard. Other units of measurement are included in this standard because of their usage.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The availability of a standard procedure, standard material, and standard plots should allow the investigator to check his laboratory technique. This practice should lead to electrochemical impedance curves in the literature which can be compared easily and with confidence.5.2 Samples of a standard ferritic type 430 stainless steel (UNS 430000) used to obtain the reference plots are available for those who wish to check their equipment. Suitable resistors and capacitors can be obtained from electronics supply houses.5.3 This test method may not be appropriate for electrochemical impedance measurements of all materials or in all environments.1.1 This practice covers an experimental procedure which can be used to check one's instrumentation and technique for collecting and presenting electrochemical impedance data. If followed, this practice provides a standard material, electrolyte, and procedure for collecting electrochemical impedance data at the open circuit or corrosion potential that should reproduce data determined by others at different times and in different laboratories. This practice may not be appropriate for collecting impedance information for all materials or in all environments.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method describes an EPR test method for quantitatively determining the relative degree of sensitization in AISI Type 304 and 304L stainless steels. The EPR test has found wide use as a means to provide a numerical level of sensitization in studies of the effects of sensitization on intergranular corrosion and intergranular stress corrosion cracking behavior. The results of this test method correlate with other test methods (for example, Practices A262 and Test Methods G28) that are commonly used to assess sensitization in stainless steels.5.2 The EPR test can also be used for product acceptance, service evaluation, regulatory statutes, and manufacturing controls providing that both the supplier and user have agreed upon appropriate acceptance criteria and a sensitizing treatment. The test is not intended for design purposes since the test conditions accelerate corrosion in a manner that does not simulate any actual service environment.5.3 The EPR test involves the measurement of the amount of charge resulting from the corrosion of the chromium-depleted regions surrounding the precipitated chromium carbide particles. Most of these particles in a sensitized microstructure are located at the grain boundaries. However, discrete particles located within grains (referred to as intragranular precipitates) will also contribute to the total measured charge. (See Fig. 2.) Therefore, it is important to examine the alloy microstructure following an EPR test to determine the relative proportion of corrosion sites associated with intergranular versus intragranular precipitates. Sites of intergranular attack will appear similar to grain boundary ditching as defined in Practice A of Practices A262.FIG. 2 Schematic Microstructures After EPR Testing for Method A—Single LoopNOTE 1: The calculation of Pa is based on the assumptions illustrated at left. Mild cases of sensitization usually result in a combination of intergranular attack and pitting as illustrated at right (6).1.1 These test methods cover a laboratory procedure for conducting an electrochemical reactivation (EPR) test on AISI Type 304 and 304L (UNS No. S30400 and S30403, respectively) stainless steels. These test methods can provide a nondestructive means of quantifying the degree of sensitization in Type 304 stainless steels (1, 2, 3).2 These EPR test methods have found wide acceptance in studies of the effects of sensitization on intergranular corrosion and intergranular stress corrosion cracking behavior (see Terminology G193). The EPR technique has been successfully used to evaluate other stainless steels and nickel base alloys (4), but the test conditions and evaluation criteria used were modified in each case from those cited in the current test methods. This standard test covers two tests, (1) Test Method A or Single Loop, and (2) Test Method B or Double Loop.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The critical level of hydrogen in steels is that hydrogen which can build up to high concentrations at points of high triaxial stress causing embrittlement of the steel which can lead to catastrophic damage. This hydrogen can enter by various means, such as during pickling and electroplating. Means of reducing this hydrogen during processing are given in Specification B766 and Practices B183 and B242. It is still necessary, however, to know how effective these methods are. Though the ultimate reason for measuring this hydrogen is to relate it to embrittlement, this is not within the scope of this test method. As susceptibility to hydrogen embrittlement is a function of alloy type, heat treatment, intended use,and so forth, the tolerance for hydrogen must be determined by the user according to Method F519.4.2 Though the actual hydrogen concentration is not determined in this test method, the current densities have been shown to be useful as an indication of relative hydrogen concentrations (1-3),3 and therefore the degree of hydrogen embrittlement (1,2). Thus, measurements can be compared to one another (see 4.1 and 7.1).4.3 This test method is applicable as a quality control tool for processing (such as to monitor plating and baking) or to measure hydrogen uptake caused by corrosion.4.4 This test method is nondestructive; however, if there is a coating, it must be removed by a method which has been demonstrated to neither damage the steel nor introduce hydrogen to make the measurement.4.5 This test method is also applicable to situations producing continuous hydrogen permeation, such as high pressure hydrogen cylinders or corrosion processes. The results, however, would require a different treatment and interpretation (4).4.6 This test method is also applicable to small parts, such as fasteners. The technique, procedure, and interpretation would, however, have to be altered.4.7 Use of this test method on austenitic stainless steels and other face centered cubic (FCC) alloys would require different measurement times and interpretation of results because of differing kinetics.4.8 This test method can be used on slightly curved surfaces as long as the gasket defines a reproducible area. The area calculation must, however, be changed.1.1 This test method covers the procedure for measuring diffusible hydrogen in steels by an electrochemical method.1.2 This test method is limited to carbon or alloy steels, excluding austenitic stainless steels.1.3 This test method is limited to flat specimens to which the cell can be attached (see 4.6 and 4.8).1.4 This test method describes testing on bare or plated steel after the plate has been removed (see 4.4).1.5 This test method is limited to measurements at room temperature, 20 to 25°C (68 to 77°F).1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 General corrosion is characterized by areas of greater or lesser attack, throughout the plant, at a particular location, or even on a particular probe. Therefore, the estimation of corrosion rate as with mass loss coupons involves an averaging across the surface of the probe. Allowance must be made for the fact that areas of greater or lesser penetration usually exist on the surface. Visual inspection of the probe element, coupon, or electrode is required to determine the degree of interference in the measurement caused by such variability. This variability is less critical where relative changes in corrosion rate are to be detected.5.2 Both electrical test methods described in this guide provide a technique for determining corrosion rates without the need to physically enter the system to withdraw coupons as required by the methods described in Guide G4.5.3 Test Method B has the additional advantage of providing corrosion rate measurement within minutes.5.4 These techniques are useful in systems where process upsets or other problems can create corrosive conditions. An early warning of corrosive attack can permit remedial action before significant damage occurs to process equipment.5.5 These techniques are also useful where inhibitor additions are used to control the corrosion of equipment. The indication of an increasing corrosion rate can be used to signal the need for additional inhibitor.5.6 Control of corrosion in process equipment requires a knowledge of the rate of attack on an ongoing basis. These test methods can be used to provide such information in digital format easily transferred to computers for analysis.1.1 This guide covers the procedure for conducting online corrosion monitoring of metals in plant equipment under operating conditions by the use of electrical or electrochemical methods. Within the limitations described, these test methods can be used to determine cumulative metal loss or instantaneous corrosion rate, intermittently or on a continuous basis, without removal of the monitoring probes from the plant.1.2 The following test methods are included: Test Method A for electrical resistance, and Test Method B for polarization resistance.1.2.1 Test Method A provides information on cumulative metal loss, and corrosion rate is inferred. This test method responds to the remaining metal thickness except as described in Section 5.1.2.2 Test Method B is based on electrochemical measurements for determination of instantaneous corrosion rate but may require calibration with other techniques to obtain true corrosion rates. Its primary value is the rapid detection of changes in the corrosion rate that may be indicative of undesirable changes in the process environment.1.3 The values stated in SI units are to be considered standard. The values in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 5.6.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is primarily used to monitor the concentration of oxygen in gases to verify gas quality for operational needs and contractual obligations. Oxygen content is a major factor influencing internal corrosion, fuel quality, gas quality, and user and operator safety.1.1 This test method is for the determination of oxygen (O2) in gaseous fuels and fuel type gases. It is applicable to the measurement of oxygen in natural gas and other gaseous fuels. This method can be used to measure oxygen in helium, hydrogen, nitrogen, argon, carbon dioxide, mixed gases, process gases, and ambient air. The applicable range is 0.1 ppm(v) to 25 % by volume.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the total trace nitrogen (organic and inorganic) naturally found in liquid aromatic hydrocarbons, its derivatives and related chemicals.1.2 This test method is applicable for samples containing nitrogen from 0.05 to 100 mgN/kg. For higher concentrations refer to Test Method D 4629.1.3 The detector response for the technique within the scope of this test method is linear with nitrogen concentration.1.4 The following applies to all specified limits in this test method: for purposes of determining conformance with this test method, an observed value or a calculated value shall be rounded off "to the nearest unit" in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E 29.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9 and Note 2, Note 3, Note 4, and Note 8.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 All sulfur present in petroleum products is converted to sulfur oxides upon combustion, which is a significant pollutant of the atmosphere. This test method can be used to monitor the total sulfur levels in these fuels.Note 1—Virtually all sulfur compounds will be detected by this technique.1.1 This test method covers the determination of total sulfur in liquid hydrocarbons, boiling in the range from approximately 25 to 400°C, with viscosities between approximately 0.2 and 10 cSt (mm/S) at room temperature. This test method is applicable to naphthas, distillates, and motor fuels such as gasolines, reformulated gasolines, gasohols, diesels and biodiesels containing approximately 1 to 100 mg/kg total sulfur in gasoline type products, and approximately 1 to 40 mg/kg sulfur in diesel type products.1.2 The detector response for this technique within the scope of this test method is linear with sulfur concentration.1.3 Based on interlaboratory study, the pooled limit of quantitation of this test method is 3 mg/kg for gasoline and <0.5 mg/kg for diesel samples.1.4 This test method meets the U.S. EPA requirements for measuring sulfur in ultra low sulfur diesel fuels by the designated Test Method D6428, as published in the U.S. Federal Register § 80.520(a)(1).1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Sections 8 and 9.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The procedures described, herein, can be used to evaluate the severity of hydrogen charging of a material produced by exposure to corrosive environments or by cathodic polarization. It can also be used to determine fundamental properties of materials in terms of hydrogen diffusion (for example, diffusivity of hydrogen) and the effects of metallurgical, processing, and environmental variables on diffusion of hydrogen in metals.5.2 The data obtained from hydrogen permeation tests can be combined with other tests related to hydrogen embrittlement or hydrogen induced cracking to ascertain critical levels of hydrogen flux or hydrogen content in the material for cracking to occur.1.1 This practice gives a procedure for the evaluation of hydrogen uptake, permeation, and transport in metals using an electrochemical technique which was developed by Devanathan and Stachurski.2 While this practice is primarily intended for laboratory use, such measurements have been conducted in field or plant applications. Therefore, with proper adaptations, this practice can also be applied to such situations.1.2 This practice describes calculation of an effective diffusivity of hydrogen atoms in a metal and for distinguishing reversible and irreversible trapping.1.3 This practice specifies the method for evaluating hydrogen uptake in metals based on the steady-state hydrogen flux.1.4 This practice gives guidance on preparation of specimens, control and monitoring of the environmental variables, test procedures, and possible analyses of results.1.5 This practice can be applied in principle to all metals and alloys which have a high solubility for hydrogen, and for which the hydrogen permeation is measurable. This method can be used to rank the relative aggressivity of different environments in terms of the hydrogen uptake of the exposed metal.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a prediction of the resistance to stable propagating pitting corrosion of stainless steels and related alloys in a standard medium (see Note 1). The CPT test can be used for product acceptance, alloy development studies, and manufacturing control. In the case of product acceptance, the supplier and user must agree upon the preconditioning of the specimen with regard to surface finish. The test is not intended for design purposes since the test conditions accelerate corrosion in a manner that does not simulate any actual service environment.5.2 Another method to determine the potential independent CPT with an electrochemical technique has been discussed in the literature (1-4). This test method involves a potentiodynamic (potential sweep) procedure performed on specimens at different temperatures. A comparison (2) of the test method described in this test method and the potentiodynamic technique has indicated no difference in the test result obtained.1.1 This test method covers a procedure for the evaluation of the resistance of stainless steel and related alloys to pitting corrosion based on the concept of the determination of a potential independent critical pitting temperature (CPT).1.2 This test method applies to wrought and cast products including but not restricted to plate, sheet, tubing, bar, forgings, and welds, (see Note 1).NOTE 1: Examples of CPT measurements on sheet, plate, tubing, and welded specimens for various stainless steels can be found in Ref (1).2 See the research reports (Section 14).1.3 The standard parameters recommended in this test method are suitable for characterizing the CPT of austenitic stainless steels and other related alloys with a corrosion resistance ranging from that corresponding to solution annealed UNS S31600 (Type 316 stainless steel) to solution annealed UNS S31254 (6 % Mo stainless steel).1.4 This test method may be extended to stainless steels and other alloys related to stainless steel that have a CPT outside the measurement range given by the standard parameters described in this test method. Appropriate test potential and solution must then be determined.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM G199-09(2020)e1 Standard Guide for Electrochemical Noise Measurement Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Use of this guide is intended to provide information on electrochemical noise to monitor corrosion on a continuous basis.5.2 This guide is intended for conducting electrochemical noise measurements, both in the laboratory and in-service environments (36).5.3 This technique is useful in systems in which process upsets or other problems can create corrosive conditions. An early warning of corrosive attack can permit remedial action before significant damage occurs to process equipment (37).5.4 This technique is also useful when inhibitor additions are used to control the corrosion of equipment. The indication of increasing corrosion activity can be used to signal the need for additional inhibitor (38).5.5 Control of corrosion in process equipment requires knowledge of the rate or mechanism of attack on an ongoing basis. This technique can be used to provide such information in a digital format that is easily transferred to computers for analysis (39) .1.1 This guide covers the procedure for conducting online corrosion monitoring of metals by the use of the electrochemical noise technique. Within the limitations described, this technique can be used to detect localized corrosion activity and to estimate corrosion rate on a continuous basis without removal of the monitoring probes from the plant or experimental cell.1.2 This guide presents briefly some generally accepted methods of analyses that are useful in the interpretation of corrosion test results.1.3 This guide does not cover detailed calculations and methods; rather it covers a range of approaches that have found application in corrosion testing.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Gaseous fuels, such as natural gas, petroleum gases and bio-gases, contain sulfur compounds that are naturally occurring or that are added as odorants for safety purposes. These sulfur compounds are odorous, toxic, corrosive to equipment, and can inhibit or destroy catalysts employed in gas processing and other end uses. Their accurate continuous measurement is important to gas processing, operation and use, and is frequently of regulatory interest.5.2 Small amounts (typically, total of 4 to 6 ppm(v)) of sulfur odorants are added to natural gas and other fuel gases for safety purposes. Some sulfur odorants are reactive and may be oxidized to form more stable sulfur compounds having higher odor thresholds which adversely impact the potential safety of the gas delivery systems and gas users. Gaseous fuels are analyzed for sulfur compounds and odorant levels to assist in pipeline integrity surveillance and to ensure appropriate odorant levels for public safety.5.3 This method offers an on-line method to continuously identify and quantify individual target sulfur species in gaseous fuel with automatic calibration and validation.1.1 This test method is for on-line measurement of gas phase sulfur-containing compounds in gaseous fuels by gas chromatography (GC) and electrochemical (EC) detection. This test method is applicable to hydrogen sulfide, C1 to C4 mercaptans, sulfides, and tetrahydrothiophene (THT).1.1.1 Carbonyl sulfide (COS) is not measured according to this test method.1.1.2 The detection range for sulfur compounds is approximately from 0.1 to 100 ppm(v) (mL/m3) or 0.1 to 100 mg/m3 at 25 °C, 101.3 kPa. The detection range will vary depending on the sample injection volume, chromatographic peak separation, and the sensitivity of the specific EC detector.1.2 This test method describes a GC-EC method using capillary GC columns and a specific detector for natural gas and other gaseous fuels composed of mainly light (C4 and smaller) hydrocarbons. Alternative GC columns including packed columns, detector designs, and instrument parameters may be used, provided that chromatographic separation, quality control, and measurement objectives needed to comply with user or regulator needs, or both, are achieved.1.3 This test method does not intend to identify and measure all individual sulfur species and is mainly employed for monitoring naturally occurring reduced sulfur compounds commonly found in natural gas and fuel gases or employed as an odorant in these gases.1.4 This test method is typically employed in repetitive or continuous on-line monitoring of sulfur components in natural gas and fuel gases using a single sulfur calibration standard. Guidance for producing calibration curves specific to particular analytes or enhanced quality control procedures can be found in Test Methods D5504, D5623, D6228, D6968, ISO 19739, or GPA 2199.1.5 The test method can be used for measuring sulfur compounds listed in Table 1 in air or other gaseous matrices, provided that compounds that can interfere with the GC separation and electrochemical detection are not present.1.6 This test method is written as a companion to Practices D5287, D7165 and D7166.1.7 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the total sulfur naturally found in liquid aromatic hydrocarbons, their derivatives and related chemicals.1.2 This test method is applicable for samples containing sulfur from 0.05 to 100 mgS/kg.1.3 The detector response for this technique within the scope of this test method is linear with sulfur concentration.1.4 The following applies to all specified limits in this test method for purposes of determining conformance with this test method, an observed value or a calculated value shall be rounded off "to the nearest unit" in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E 29.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9, and Notes 2-4 and Note 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 This practice provides guidance for reporting, displaying, and plotting electrochemical corrosion data and includes recommendations on signs and conventions. Use of this practice will result in the reporting of electrochemical corrosion data in a standard format, facilitating comparison between data developed at different laboratories or at different times. The recommendations outlined in this standard may be utilized when recording and reporting corrosion data obtained from electrochemical tests such as potentiostatic and potentiodynamic polarization, polarization resistance, electrochemical impedance and admittance measurements, galvanic corrosion, and open circuit potential measurements.1.1 This practice covers conventions for reporting and displaying electrochemical corrosion data. Conventions for potential, current density, electrochemical impedance and admittance, as well as conventions for graphical presentation of such data are included.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. See also 7.4.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
17 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页